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Preface

This Second Edition of the RCT-YES statistical theory report updates the First Edition that
was published in June 2015 by the Institute of Education Sciences (IES) at the U.S.

Department of Education. A summary of the updates and corrections is as follows:

1. Accounting for covariances between subgroups in the same block or cluster in

conducting statistical tests of subgroup differences in estimated impacts

For clustered designs and some non-clustered blocked designs, the outcomes of individuals
within the same cluster and/or block could be correlated due to shared environments and
treatment conditions. The Second Edition discusses more fully the approach used by RCT-
YES to account for these correlations in conducting statistical tests of subgroup interactions

(for example, differences in impact estimates for males and females).

The First Edition (page 102) discussed that RCT-YES accounts for subgroup covariances for
the subgroup interaction tests for the super-population (SP) model for Design 3, but did not
discuss the approach for other designs. The revised report provides a fuller discussion of the

treatment of subgroup covariances for the following designs:

e The SP Design 2 and Design 4 models for the population average treatment effect
(PATE) and unit average treatment effect (UATE) parameters (pages 84-85; middle
of page 118)

e The finite-population (FP) Design 3 and 4 models (page 100; middle of page 114)

e The SP Design 4 model for the cluster average treatment effect (CATE) parameter
(middle of page 117)

e The complier average causal effect (CACE) models (pages 89; 119)

In addition, a new software option has been added called NO_COV_SG that users can set
to 1 to exclude the covariance terms from the subgroup interaction tests (see, for example,
page 11; middle of page 85). The reason for this option is that the estimated subgroup
covariances could be unstable for certain designs (for example, those with small samples),
thereby yielding unreliable chi-squared statistics. Thus, this option can be used in these

instances to yield conservative chi-squared statistics.



2. Impact estimation for the CACE parameter for blocked designs

As discussed in this Second Edition, for blocked designs (Designs 2 and 4), RCT-YES
estimates the CACE parameter by dividing the estimated average treatment effects (ATEs)
on the outcomes by the estimated ATEs on the service receipt variables (page 89 and 119).
The ATEs in both the numerators and denominators of the CACE estimator are pooled

across blocks using the block-specific weights (w,).

The First Edition incorrectly stated that the CACE parameter is estimated by first obtaining
CACE estimates separately by block and then weighting them (usingw, ) to obtain pooled

CACE estimates (pages 84 and 113). The First Edition also incorrectly stated that for CACE
estimation, RCT-YES excludes blocks where there is no variation in either the outcome
variable or the service receipt variable for either research group (pages 84 and 113). In
actuality, the program allows zero variances in a block if all outcome or service receipt values
in the block have the same value. The approach discussed in the First Edition for variance

estimation, however, accurately describes the approach used in RCT-YES.

3. Estimation of the control group mean for compliers for the CACE analysis

The First Edition did not discuss how RCT-YES presents the impact findings for the CACE
analysis. The Second Edition fills this gap by discussing that RCT-YES calculates (1) the
control group mean for compliers, (2) the CACE impact estimate, and (3) the treatment
group mean for compliers calculated as the sum of the control group mean for compliers
and the CACE estimate. In particular, pages 67- 68 discuss the statistical methods used to

calculate the control group mean for compliers.

4. Allowing for covariate-by-treatment interactions in the regression models

The Second Edition discusses in more detail the statistical theory underlying regression
models that include explanatory variables formed by interacting the baseline covariates with
the treatment status indicator variable (pages 43-46; 104-105). The discussion also includes
two new Lemmas 5.3a and 5.4a. The main reason for this enhanced discussion is that as
discussed on page 44, the model with interactions leads to asymptotically efficient variance
estimators (that is, variances with the smallest possible values among a class of asymptotically
linear estimators). This is important because there is both simulation and empirical evidence
that precision levels for impact estimators are very similar for models with and without
covariate-by-treatment interaction terms. Thus, in practice, the regression approach used by
RCT-YES is likely to be close to the variance efficiency bound, which is an important

justification for the approach.
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Purpose of the report

The RCT-YES software package estimates average treatment effects for randomized controlled trials
(RCTs) of interventions and policies, where individuals or groups of individuals are randomly
assigned to treatment or control groups. The development of RCT-YES was funded by the Institute
of Education Sciences (IES) at the U.S. Department of Education (ED) to facilitate the conduct of
RCTs by state and local education agencies to test promising interventions and policies in their
service areas. Student- and teacher-level data from state longitudinal data systems (SLDSs) provide a
rich data source for such evaluations, although other data sources could also be used for the analysis.
By taking advantage of opportunities to conduct RCTs of new or existing policies, “opportunistic
experiments” offer the chance for education agencies and policymakers to generate rigorous evidence
about what works in the decisions they make every day. The RCT-YES software can be downloaded

for free from www.rct-yes.com.

RCT-YES estimates average treatment effects—grounded in rigorous statistical theory—for a wide
range of designs used in education research. The program estimates intervention effects by
comparing the average outcomes of those randomly assigned to different research conditions for the
full sample and for baseline subgroups of students, educators, and schools. The program conducts
hypothesis tests to assess the statistical significance of the estimated effects and reports evaluation
findings in formatted tables that conforms to the presentation of RCT findings in IES-published
reports. The program was designed to minimize user input for accessing and running the program
and the data required for estimation. While RCT-YES was developed for RCTs in the education
area, it is also applicable to RCTs in other fields. It can also be used to estimate basic intervention
effects for quasi-experimental designs with comparison groups, although these designs may require

supplemental methods.

RCT-YES must be considered a tool for analyzing RCT data, and is not a substitute for researcher
experience and judgment. A successful RCT hinges on the suitability of the design for addressing
well-defined causal research questions with sufficient statistical power, the successful
implementation of the intervention, and high quality study data. Even if these conditions are met,
a well-conducted analysis of RCT data requires considerable expertise in a range of methodological
areas, such as the construction of outcome measures, impact estimation methods, hypothesis testing,
adjustments for missing data, and the interpretation and reporting of evaluation findings. Thus, the
policy relevance of the results produced by RCT-YES will largely depend on the rigor of the study
design, the quality of the input data, and user expertise in correctly specifying program inputs and
interpreting program output. Where appropriate, users may want to consult with individuals trained
in RCT methodology to gain the most out of the program. In addition, users may want to compare

evaluation findings produced by RCT-YES to those found using other software and methods.


http://www.rct-yes.com/

This technical report presents the statistical theory underlying RCT-YES. We discuss a unified design-
based approach for impact estimation using the building blocks of the causal inference model that
underlies experimental designs. We bring together and build on the recent statistical literature on
these methods, using in particular Imbens and Rubin (2015), as well as Freedman (2008), Imbens
(2004), Imai, King, and Nall (2009), Lin (2013), Schochet (2010, 2013), and Yang and Tsiatis (2001).
The theory also builds on the statistical literature on design-based methods for analyzing survey data
with complex sample designs (see, for example, Fuller, 1975 and 2009; Lohr, 2009; and Rao and
Shao, 1999).

Our focus is on the estimation of average treatment effects for a wide range of RCT designs used in
education research, including blocked and clustered designs. We consider impact estimation for the
full sample and baseline subgroups. We derive simple differences-in-means estimators as well as
regression estimators that adjust for baseline covariates to help improve precision. We discuss
variance estimation, the asymptotic distributions of the considered estimators, hypothesis testing,
weighting to account for data nonresponse or other design reasons, and methods to assess baseline
equivalence of the treatment and control groups. A simulation analysis is conducted to assess the

statistical performance of the design-based estimators and other commonly-used RCT estimators.

The report is intended for methodologists with a strong background in statistical theory, although
the introductory chapters may be of interest to those with some methodological training who seek
an overview of design-based statistical inference for RCT designs. The RCT-YES User’s Manual
(Schochet, 2016) provides details on how to run the program in R or Stata using a free desktop
interface application and is intended for a broader audience. The User’s Manual, which can be

downloaded from the RCT-YES website, www.rct-yes.com, provides a beginner’s introduction to

RCTs, an intuitive overview of the different designs estimated by the program, and real-world
examples of program inputs and outputs. Future changes and updates to RCT-YES will be provided
in supplemental technical documents posted on the RCT-YES website.

The remainder of this report is in nine chapters. Chapter 1 provides an overview of the designs and
methodological topics considered in this report. Chapter 2 provides background information on
RCT-YES data requirements and program input specifications, and Chapter 3 discusses how the
program addresses data disclosure issues. Chapter 4 introduces the design-based approach for impact
estimation for RCT designs, the reasons we adopt this approach rather than the model-based
approach that is more commonly used in education research, and key statistical assumptions that
underlie the design-based theory. Chapters 5 to 8 discuss the four main RCT designs in RCT-YES
that are defined by their clustering and blocking status, and Chapter 9 presents results from a
simulation analysis to assess the statistical performance of the design-based estimators. Key

theoretical results are provided in the main text; mathematical proofs are provided in Appendix A.
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1. Designs and Analyses in RCT-YES

1. Overview of the considered RCT designs and methodological topics

RCT-YES estimates intervention effects for commonly used education RCT designs that address the
following two causal research questions:

1. What are average effects of the intervention on student (or educator) outcomes for the full

sample?

2. Do intervention effects differ for key subgroups of students, educators, schools, and

community contexts defined by their pre-randomization (baseline) characteristics?

The program addresses these research questions by comparing the mean outcomes of those
randomly assigned to the treatment and control groups for the full sample and key baseline

subgroups.

RCT-YES estimates average treatment effects—hereafter, referred to as “ATEs”—for RCT designs defined
by two key features. First, the designs are defined by the unit of randomization:

o Non-lustered designs, where individual students are randomly assigned to a treatment or

control condition.

o (Clustered designs, where groups (such as schools or classrooms) are randomized to a research
condition. Under these designs, all students within a group are assigned to the treatment or

control status of their group.

Second, the designs in RCT-YES are defined by whether random assignment is conducted separately
within blocks (strata):

o Non-blocked designs, where random assignment is conducted for a single population (for

example, within a single school district). These designs can be clustered or non-clustered.

o Blocked designs, where random assignment is conducted separately within non-overlapping
subpopulations that comprise the entire sample. Blocked designs can be clustered or non-
clustered designs. An example of a non-clustered, blocked design is a multi-district RCT
where students are randomly assigned within each school district (site). Blocked designs also
include three types of designs that are often used in education research: (1) matched paired
designs where similar units are paired and random assignment is then conducted within each
pair, (2) designs where random assighment is conducted separately within demographic
subgroups (for example, for girls and boys) to ensure treatment-control group balance for
each subgroup, and (3) longitudinal designs where random assignment is conducted

separately by cohort (for example, incoming third graders in two separate years).



1. Designs and Analyses in RCT-YES

This report is structured around the four RCT designs that combine these two key design features.
These four designs are summarized in Table 1, including key RCT-YES data requirements and default

specifications for impact estimation. Each considered design is discussed in its own chapter.
The report covers the following topics:

e ATE estimation for the full sample as well as population subgroups that are defined by pre-

intervention (baseline) characteristics (moderator analyses).

e Simple differences-in-means estimators as well as estimators from regression models that

adjust for baseline covariates to improve the precision of the ATE estimates.

e Standard error estimation and significance testing of the null hypothesis of a zero ATE

against the alternative that it differs from zero, including multiple comparisons corrections.

e Estimators for (1) finite-population (FP) models where results are assumed to pertain to the
study sample only (the default RCT-YES specification) and (2) super-population (SP) models
where results are assumed to generalize outside the study sample to a broader population of

similar students and schools.

e Estimators that incorporate weights to adjust for data nonresponse or other reasons.

e Methods to assess baseline equivalence of the treatment and control groups using baseline

covariates.

RCT-YES can estimate impacts on continuous outcomes (such as student achievement test scores)
and binary outcomes (such as high school graduation status) that are measured after random
assignment. We consider ordinary least squares (OLS) methods to obtain regression-adjusted impact
estimates for both continuous and binary outcomes; we do not consider estimation methods using

logit or probit models for binary outcomes.

We focus on ATE estimation assuming a single treatment and control group (or two treatment
groups). The methods that we discuss, however, apply also to designs with multiple treatment groups
where pairs of treatment conditions are compared to each other. Users can estimate these pairwise
impacts in separate runs of RCT-YES. The program, however, does not correct Type I error rates for
multiple testing across these pairwise comparisons, which would need to be performed outside the

program (see Schochet, 2009 for a discussion of these methods).

RCT-YES provides estimates of the intention-to-treat (ITT) parameter—that is, treatment effects on
the offer of intervention services. In addition, if data are provided on the take-up of intervention
services by treatment group members (and control group “crossovers”), RCT-YES provides optional
estimates of the complier average causal effect (CACE) that pertains to “compliers”—those who

would receive intervention services as a treatment but not as a control (see, for example, Angrist,
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Imbens, and Rubin, 1996; Bloom, 1984; Heckman, Smith, and Taber, 1998; and Schochet and
Chiang, 2011). The CACE parameter is also known as the local average treatment effect (LATE)
parameter or treatment-on-thetreated (TOT) parameter. This report considers design-based
estimation methods for both the ITT and CACE parameters.

RCT-YES does not conduct additional analyses that researchers sometimes employ to help
understand the variation in treatment effects in RCTs (see Schochet et al., 2014). For example, the
program does not conduct analyses to identify mediating factors that account for treatment effects
on longer-term outcomes, examine the variation in treatment effects for subgroups defined by their
post-baseline experiences, or estimate quantile treatment effects to assess how intervention effects
vary along the distribution of an outcome measure. Rather the focus of RCT-YES and the methods

presented in this report is on ATE estimation for the full sample and baseline subgroups.



1. Designs and Analyses in RCT-YES

Table 1. Summary of designs in RCT-YES

Unit of random

assignment

Blocking

Data requirements and key default RCT-YES
specifications for ATE estimation

Design 1.

Non-clustered,
non-blocked

Design 2:

Non-clustered,

blocked

Students or
other
individuals

Students or
other
individuals

None

Districts, schools,
classrooms,
matched pairs,
demographic
groups, cohorts

Input data requires one record per observation, and
outcome data for at least 2 treatments (Ts) and 2
controls (Cs)

Deletion of cases with missing values for the
considered outcome

Simple differences-in-means estimator

Finite population (FP) model

Input data requires one record per observation with
block identifiers that could be masked

Blocks are included if they contain at least 2 Ts and
2 Cs with outcome data; atleast 1 Tand 1 C are
required for the super-population (SP) model option
and the FP model with the BLOCK_FE option

Deletion of cases with missing values for the
considered outcome

Simple differences-in-means estimator within each
block; blocks are weighted by their student sample
sizes to obtain overall impact estimates

FP model, except for matched pair designs

Design 3:
Clustered,

non-blocked

Districts,
schools,
classrooms,
etc.

None

Input data requires one record per observation or
one record per cluster (cluster averages) with
cluster identifiers that could be masked

Clusters are included if they contain at least 1
observation with outcome data

Deletion of cases with missing values for the
considered outcome

Simple differences-in-means estimator using
cluster averages; clusters are weighted equally to
obtain overall impact estimates

FP model

Design 4:
Clustered,
blocked

Districts,
schools,
classrooms,
etc.

Districts, schools,
matched pairs,
demographic
groups, cohorts

Input data requirements combine those from
Design 2 for blocks and Design 3 for clusters

Simple differences-in-means estimator using
cluster averages; clusters are weighted equally to
obtain block estimates, and blocks are weighted by
their number of clusters to obtain overall impact
estimates

FP model, except for matched pair designs




2. Data file and program inputs

2. RCT-YES data requirements and Input specifications

The RCT-YES program is free and users can run the program in R or Stata using a desktop interface
application to specify the program inputs. No programming knowledge is needed beyond how to
create an R or Stata dataset. The format of the input dataset must conform with the statistical
package used for estimation (a .rda file for R or .dta file for Stata). After specifying all inputs, the
interface will generate a R or Stata program file that users will then need to run in a separate step
using procedures that they typically employ to run such programs. The program will output a .html
file (named in the interface) containing formatted tables that present the impact findings. Users can
also request that the program produce a .csv data file containing information displayed in the output

tables that can be used for further analyses and reporting.

For non-clustered designs (Designs 1 and 3), RCT-YES requires individual-level data with one record
per individual in the study sample, including those with missing data. Individuals will typically be
students, but they could also be teachers or principals if the intervention targets educators and their
outcomes. For clustered designs (Designs 2 and 4), RCT-YES can accommodate data in two formats:
(1) individual-level data or (2) data that have already been averaged to the cluster level (for example,
average school test scores for students in the sample). For the latter format, the input data file must

contain a separate set of cluster-level averages for the full sample analysis and each subgroup analysis.

For all designs, the data file must contain a treatment status indicator variable that is coded as 1 for
treatments and O for controls (or 1 for one treatment group and O for another). This variable must

be available for all observations or RCT-YES will not conduct the analysis.

The data file does not need to include student identifiers (such as name, address, or date of birth).
However, the data file must contain block and/or cluster identifiers for Designs 2, 3, and 4 for all
observations. Importantly, these identifiers could be masked so as not to reveal the specific names or

locations of blocks or clusters in the sample.

The data file must contain data on each specified outcome measure, ideally including records with
missing data so that the program can compute study attrition rates. To estimate impacts for a
particular outcome, RCT-YES excludes from the analysis observations with missing values for that
outcome. The program can accommodate weights in the input data file to adjust for data
nonresponse or other design-related reasons. If weights are specified, they must be positive and

available for all cases with non-missing outcome data or RCT-YES ignores the weights.

If users are interested in conducting subgroup analyses, the file must contain categorical variables
that define the baseline subgroups. Users should be aware that it is good research practice to include
only a small number of key, policy-relevant subgroups for the analysis that aligns with the study’s

conceptual model, and to avoid ex post “fishing” for positive subgroup findings that could lead to
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spurious impact findings (see, for example, Schochet, 2009). RCT-YES will exclude from the

subgroup analysis cases with missing subgroup data.

If users are interested in obtaining regression-adjusted ATEs, the data file will need to contain data
on each specified baseline covariate, which can be continuous or binary. Only a small number of
covariates—which are highly correlated with the outcomes measures—should be included in the
regression models to avoid estimation complexities. By default, RCT-YES requires that there must
be at least 5 observations (clusters) per baseline covariate or the regression analysis is not performed.
RCT-YES imputes missing baseline covariates for covariates with fewer than 30 percent missing
values for both the treatment and control groups (using mean imputation), but excludes covariates

with more missing values from the analysis. These defaults can be changed using program options.

Table 2 displays a dictionary of input variables for running RCT-YES to provide context for the
methodological topics covered in this report. Because RCT-YES is being designed to minimize user
input to accommodate users with diverse backgrounds, the program uses a number of default
specifications for the analysis; users must be aware that these defaults might not apply in all contexts,

and should use program options to change the default specifications where appropriate.
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Variable
definition

Input variable

(Page references)

Table 2. Dictionary of input statements for RCT-YES

Variable
format

Additional
information

Getting Started: R/Stata and Input Data

STAT_PACKAGE Statistical package for the R Required
analysis Stata
DATA_FILE Name of input data file for the One record per student, Required
analysis educator, or cluster. The file
must be a .rds file for R or a
.dta file for Stata.
Design Selection and Title
DESIGN Type of design 1 = Non-clustered, non-blocked  Required
2 = Non-clustered, blocked
3 = Clustered, non-blocked
4 = Clustered, blocked
TITLE Title for program output Character Optional
Required Design Parameters
TC _STATUS Name of treatment or control 0 = Control Required for all observations
status indicator variable 1 = Treatment
BLOCK_ID Name of variable containing the Numeric or character Required for Designs 2 and 4 for

block identification codes

MATCHED_PAIR Indicator for a matched pair

design

0 = Not a matched pair design
(default)

1 = Matched pair design

all observations

For the default finite-population
(FP) model, blocks are included if
they contain at least 2 treatments
and at least 2 controls with
outcome data that vary

For the optional SP model or
BLOCK_FE=1 FP model, at least 1
treatment and at least 1 control
are needed

Required for Designs 2 and 4 for
matched pair designs

Pairs are included only if data are
available for both pair members

The super-population (SP) model
is used for estimation

CLUSTER_ID Name of variable containing the

cluster identification codes

TYPE_CLUS_DATA Indicator for clustered designs as
to whether the input file contains

individual- or cluster-level data

Numeric or character

0 = Cluster-level averages
1 = Individual-level data

Required for Designs 3 and 4 for
all observations

Clusters are included if they have
at least one observation with
outcome data

Required for Designs 3 and 4
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Input variable

(Page references)

Variable
definition

Variable
format

Additional
information

CLUSTER_FULL

If TYPE_CLUS_DATA = 0, the
name of a binary variable in the
input data file indicating whether
the cluster-level average pertains
to the full sample or a subgroup

0 = Record pertains to a
subgroup cluster average

1 = Record pertains to the full
sample cluster average

Required for Designs 3 and 4 if
TYPE_CLUS_DATA=0

Optional Design and Analysis Parameters

SUPER_POP Indicator of preference for the 0 = Finite-population (FP) Optional
super-population (SP) model model Default is the FP model
1 = SP model
CATE_UATE Indicator for SP designs that the 0 = PATE Optional for Designs 2 to 4 if
CATE or UATE parameters should 1 = CATE SUPER_POP =1
be estimated (see text) 2 =UATE Default is the PATE parameter
BLOCK_FE Indicator for blocked FP and some O = Model includes interactions  Optional for Designs 2 and 4
SP designs that the model should and main block effects
) g ) Applies to the FP model and the
contain main block effects but not ) )
) ) 1 = Model includes main block CATE parameter for the SP model
block-by-treatment interactions effects onl
y Default is the model with
interactions
LABEL_T Labels for the treatment and Character of length 14 or less Optional; no quotes needed
control groups, respectivel
LABEL_C group P y Defaults are Treatment and
Control
“Group” should be omitted from
the label because the program will
add it to the end of the label
MISSING_COV Maximum percentage of missing Numeric: 0 to 75 Optional
data for a baseline covariate to be .
included in the regression models. Defaultis 30
This condition is applied to both
the treatment and control groups.
OBS_COV Required ratio of the number of Numeric > 1 Optional
observations per covariate for the i
. ) . Default is 5
regression analysis and joint test
of baseline equivalence to be
performed. The variable pertains
to the number of clusters for
clustered designs and to the
number of blocks for PATE and
UATE blocked designs.
MIN_NUM Minimum group size adopted by Integer >3 Optional
the state or other entity for .
; Default is 10
reporting outcomes to protect
personally identifiable
information (PII)
ALPHA_LEVEL Significance level for testing the Integer: 1 to 30 Optional
null hypothesis of zero average
¥p g Default is 5

treatment effects (in percentages)
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Input variable

(Page references)

Variable
definition

2. Data file and program inputs

Variable
format

Additional
information

NO_COV_SG Excludes covariance terms in the 0 = Include covariance terms in  Optional for Designs 3 and 4 and
statistical tests of differences in the statistical tests the Design 2 PATE and UATE
impact estimates across . ) models

. 1 = Exclude covariance terms in
subgroup categories (for example, e . . .
the statistical tests Default is the inclusion of the
for males and females) )
covariance terms
LIMIT_PRINT Suppresses printing of detailed 0 = All output tables printed Optional
descriptive sample statistics in
P P 1 = Printing limited to tables Default is printing of all tables
the output tables . o
with main impact results only
(Tables 1 and 8 to 10)
CSV_FILE Specifies that the computer 0 = .csv file not produced Optional

program should produce a .csv
data file containing information
displayed in the output tables for
further analyses and reporting

1 = .csv file produced

Default is the production of the
.csv file

Outcomes, Weights, Covariates, and Subgroups

OUTCOME_DMN

Title of outcome domain
pertaining to a specific class of
outcomes for which common
analyses are to be conducted

Character

Optional

Outcomes with common analyses
are grouped to minimize data
entry and facilitate reporting and

hypothesis testing
OUTCOME Name of outcome measure Numeric; all missing data codes  Required
are valid based on the . .
Cases with missing values for an
language used (Stata or R)
outcome are excluded from the
analysis for that outcome
LABEL Label for outcome measure Character Optional
Blank
WEIGHT Name of the observation-level Numeric Optional
weight that provides information
g P Blank Default is equal weighting of all

on how to weight blocks and/or
clusters to obtain pooled
estimates and to adjust for
missing data (nonresponse) or
unequal sampling probabilities
for other design-related reasons

individuals for non-clustered
designs and clusters for clustered
designs

A different weight can be
specified for each outcome and
subgroup

Weights must be positive and
nonmissing for cases with
outcome data or they are ignored

11



2. Data file and program inputs

Input variable

(Page references)

Variable
definition

Variable
format

Additional
information

STD_OUTCOME

Individual-level standard deviation
of the outcome measure

Numeric > 0

Blank

Required for Designs 3 and 4 if
TYPE_CLUS_DATA = 0O in order for
the program to calculate impacts
in effect size units

Optional for other designs, where
the default is the full sample
standard deviation for the control
group in the data

COVARIATES List of names of baseline Numeric: continuous or binary; Optional
covariates to obtain regression- all missing data codes are valid ) )
) ) ) Covariates are excluded if they
adjusted impact estimates for full based on the language used . e
sample or subgroup analyses (Stata or R) contain too many missing values
(see MISSING_COV above) or if
there are too few observations per
covariate (see OBS_COV above)
A different set of covariates can
be specified for each outcome
domain and each subgroup
GOT_TREAT Name of variable indicating the If DESIGN= 1 or 2 or DESIGN = Optional for estimating complier
receipt of intervention services for 3 or 4 and average causal effects (CACE)
the treatment and control groups.  TYPE_CLUS_DATA=0: pertaining to those who would
The variable should be binary for ) receive intervention services as a
) . 0 = Treatment not received
all designs except if treatment but not as a control
TYPE_CLUS_DATA = 1, in which 1 =Treatment received (see Chapter 2e)
case the variable should be a If TYPE_CLUS_DATA=1: Up to 2 variables can be specified
numeric service receipt rate . for each outcome domain
between O and 1. Numeric:>0and <1
Cases with missing values are
excluded from both the CACE and
ATE analyses
SUBGROUP Name of subgroup variable Categorical; all missing data Optional

codes are valid based on the
language used (Stata or R)

Baseline subgroups can pertain to
student, teacher, school, or other
characteristics and must be large
enough to protect data disclosure

Baseline Equivalence Analysis

BASE_EQUIV List of names of baseline Numeric: continuous or binary; Optional
covariates that are to be used to all missing data codes are valid
assess baseline equivalence for based on the language used
treatments and controls (Stata or R)

NO_JNT _TEST Suppresses the joint test of 0 = Conduct the joint test Optional

baseline equivalence

1 = Do not conduct the joint
test

Default is the conduct of the joint
test

This option might be desirable if a
very large number of baseline
variables are specified that could
lead to program errors due to
matrix size limits in R or Stata

12



Variable
definition

Input variable

(Page references)

2. Data file and program inputs

Variable
format

Additional
information

Generate Variable List Window

BASE_NAME_VL Base name for the files below.
The interface will add a “_VL”
suffix to the base name to
distinguish these files from other

output files.

Character

Required to produce the files
below

COMP_PROG_VL Location of the R or Stata
program produced by the
interface that must be run in a
separate step outside the
interface to generate the variable

list text file

FILE_VL Location of the variable list text
file produced by the R or Stata
computer program that can then

be imported into the interface

Name and location of the variable
list text file to import into the
interface

IMPORT_VL

The interface produces a .R file
for R or a .do file for Stata with
the base name
(BASE_NAME_VL) specified
above

The R or Stata computer
program produces a .varlist text
file with the base name
(BASE_NAME_VL) from above

The interface will use the
.varlist text file to create the
variable list window

Required to produce the file

Required to produce the

COMP_PROG_VL file

Required to produce the variable
list window

Generate Output Files for the Analysis

Common base name for the three
files below (that each have
different file extensions)

BASE_NAME

Location of the interface file
containing program inputs that
can be opened and edited for
future use

INPUT_SPEC_FILE

Character

The interface produces a file
with a .rctyes extension and the
base name (BASE_NAME)
specified above

Required to produce the files
below

Required to produce the file

COMPUTER_PROG Location of the R or Stata
program produced by the
interface to be run in a separate

step to conduct the analysis

The interface produces a .R file
for R or a .do file for Stata with
the base name (BASE_NAME)
specified above

Required to produce the file

RESULTS_FILE Location of the analysis results
file produced by the R or Stata
computer program that contains

formatted output tables

The R or Stata program
produces an .html file with the
base name (BASE_NAME)
specified above and a .log file
with estimation results

Required to produce the
COMPUTER_PROG file

13






3. Minimizing disclosure

3. Minimizing disclosure of personally identifiable information

In reporting results from education RCTs, researchers must consider the protection of personally
identifiable information (PII) on students and educators. For some data sources, this protection is
mandated by law. For example, the Family Educational and Privacy Rights Act (FERPA) legally
requires PII protection for student education records. In general, RCT findings should only be
reported for subgroups that are sufficiently large and for outcomes that have sufficient variation
across the sample so that it is not possible for someone to infer sensitive information for an
individual student (such as an achievement test score). Two Technical Briefs published by the
National Center for Education Statistics (NCES) provide a detailed discussion of data disclosure
issues for the reporting of statistics using SLDS data (NCES 2011-601, November 2010; NCES 2011-
603, December 2010).

[t is very difficult to develop a computer program that can prevent PII disclosure in all instances.
Thus, RCT-YES users will need to carefully assess which impact findings can be reported in their
own contexts. RCT-YES, however, employs several key features to help minimize data disclosure risks.
First, the program provides descriptive statistics on all outcomes, subgroups, and covariates that are
listed as inputs into the program, and provides formatted tables that indicate data problems (for
example, outcomes or subgroups with small sample sizes). Users can use this information to update

the input data files and program specifications.

Second, the program uses several criteria for excluding outcomes, subgroups, and baseline covariates
from the analysis and for reporting specific impact findings. These criteria follow some of the best
reporting practices specified in a Technical Brief published by NCES on statistical methods for PII
protection in the aggregate reporting of state longitudinal data system (SLDS) data (NCES 2011-
603, December 2010). These criteria include:

e  Onmitting outcomes, subgroups, and baseline covariates that have small numbers of
students with available data. Individual states have adopted minimum group size rules for
reporting SLDS outcomes to prevent PII disclosure. Most states have set this minimum group
size to be 10 students (the default in RCT-YES), but in 2010, the minimum number ranged
from 5 to 30. This threshold value can be set using the MIN_NUM input variable in RCT-
YES (it must be at least 3). The program checks that the minimum size threshold holds for

both the treatment and control groups.

e  Omitting the entire subgroup category if any subgroup within that category is too small.
If any subgroup has fewer than the minimum number of students from above, the entire
subgroup is omitted from analysis. For instance, to examine impacts for race/ethnicity
categories, if one category has too few sample members (for example, Pacific Islanders), the

program omits all race/ethnicity categories from the analysis. This procedure is used because
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3. Minimizing disclosure

knowledge of the outcomes from the larger subgroups and for the full sample can be used to
calculate the outcomes of students in the small subgroups. In these cases, users should
combine small subgroup categories into larger ones or omit the small subgroups from the

input statements.

e  Omitting outcomes and baseline covariates that do not have sufficient variation. RCT-YES
conducts analyses using only outcomes and covariates whose values vary across the sample;
this condition must hold for both the treatment and control groups. The program excludes
variables that have zero variance (this removes outcomes that all have the same value). In
addition, RCT-YES excludes binary outcomes or covariates where there are fewer than 5
observations with a value of O or fewer than 5 observations with a value of 1 for either the

treatment or control group.

e Not reporting impact findings for individual blocks (for example, sites) or mean outcomes
for individual clusters (for example, schools). The concern is that student sample sizes in
some blocks or clusters might be small, which could lead to data disclosure issues. RCT-YES,
however, produces summary statistics on impact estimates across blocks so that users can

examine the variation in the block-specific impact findings.

e Reporting findings for binary outcomes by multiplying them by 100 and reporting them
as whole numbers without decimals. This procedure can help guard against data disclosure

for binary variables with means near 0 or 100 percent.

The program does not mask variables (by hiding original data with random numbers or characters)
or top- or bottom-code continuous variables (by setting maximum or minimum data values), because

the goal of the program is to generate impact estimates that are transparent and replicable.
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4. Overview of design-based methods

4. Overview of design-based methods used In RCT-YES

Design-based methods for experimental designs were introduced by Neyman (1923) and later
developed in seminal works by Rubin (1974, 1977) and Holland (1986) using a potential outcomes
framework. A parallel literature exists in econometrics based on the Roy (1951) switching regressions
model (see Heckman, 2008). This chapter provides an overview of these methods—in an education
context—for each considered design and how they are applied in RCT-YES. Our focus is on the
underlying ATE parameters for each design; estimators for these parameters are discussed in detail
in Chapters 5-8. We consider student-level analyses, although the methods apply also to teacher- or
principal-level analyses. The purpose of this overview is to lay the foundation for the more theoretical
treatment of these methods in the ensuing chapters. We conclude with a discussion of our rationale
for using design-based methods in RCT-YES instead of model-based and other common methods, a
summary of simulation findings on the performance of the design-based estimator, key design
assumptions that underlie all the considered estimators, and a brief summary of the impact and
variance estimators presented in this report. Table 4 summarizes the notation and acronyms used

for the statistical analysis.

a. Original Neyman finite-population (FP) model

The original Neyman-Rubin-Holland model considered a non-clustered, non-blocked RCT design
(Design 1). To describe this model in the education context, consider an experimental design where

n students from a single population are randomly assigned to either a single treatment or control

condition (or two treatment conditions). Let Y;(1) be the “potential” outcome (for example, a test

score) for student I in the treatment condition and Y;(0) be the potential outcome for the same

student in the control condition. Using the original Neyman-Rubin-Holland formulation, these

potential outcomes are assumed to be fixed for the study, which is a finite-population (FP) model.

The difference between the two fixed potential outcomes, (Y;(1)=Y/(0)), is the studentlevel

treatment effect, and the ATE parameter, B, pp, is the average treatment effect over all students:

(4D sy =T -TO =3 (%D -1(0)).

This ATE parameter—also referred to in the literature as the sample average treatment effect (SATE;

see Imbens, 2004)—cannot be calculated directly because potential outcomes for each student

cannot be observed in both the treatment and control conditions. Formally, let 7 be the

random assignment variable that equals 1 if a student is assigned to the treatment condition and O
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4. Overview of design-based methods

Table 3. Mathematical notation and acronyms for the statistical analysis

Subscript, Variable, or Acronym Definition
Subscripts
i=1 n Students
9
j=L...m Clusters, such as schools or classrooms, with n ; students per cluster
b=1 h Blocks, such as school districts
9°°°
g= 1 S Subgroups defined by pre-intervention characteristics
eens
k=1 v Baseline covariates
yeens
R,I,B,S R = Randomization distribution; 7, B, .S = the universe of students,
blocks, and schools in the respective super-populations
Variables
Y(l) Potential outcome in the treatment condition
Y(O) Potential outcome in the control condition
T Treatment status indicator: 1 for treatments, O for controls
y Observed outcome
G Subgroup indicator: 1 for those in subgroup & and O otherwise
S Block indicator: 1 for those in block b and 0 otherwise
p Sampling rate to the treatment group
q Proportion of the total sample in a block or subgroup
w Weight for aggregating blocks or clusters to obtain pooled estimates
and for adjusting for data nonresponse or other design reasons
X,Z Vectors of baseline covariates to obtain regression-adjusted estimators
R Data response indicator: 1 for those with nonmissing data and O for
those with missing data
Key Acronyms
ATE Average treatment effect; also referred to as “impact”
CACE Complier average causal effect parameter that pertains to intervention
effects for those who comply with their treatment assignments
FP, SP FP = Finite-population model where ATEs are assumed to pertain to the
study sample only; SP = Super-population model where ATEs are
assumed to generalize to a broader population
ICC Intraclass correlation coefficient
OLS, MR Regression estimators: OLS = Ordinary least squares; MR= multiple

PATE, CATE, UATE

regression with baseline covariates

ATE parameters for SP models: PATE = Population average treatment
effect (ATE); CATE = Cluster ATE; UATE = Unit ATE

Pll Personally identifiable information
RCT Randomized controlled trial

SLDS State longitudinal data system
WWC

What Works Clearinghouse at the Institute of Education Sciences (IES)
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4. Overview of design-based methods

if the student is assigned to the control condition. The data generating process for the observed

outcome for a student, y;, can then be expressed as follows:
(42) 3, =TYM+(1-T)(0).

This simple relation formalizes the randomization mechanism that we can observe Y,(1) if 7; equals

L and Y(0) if ; equals 0. Design-based methods use the simple relation in (4.2) to develop simple

1

differences-in-means and regression estimators for £, . rp, their standard errors, and their large-
sample asymptotic distributions for hypothesis testing. In this framework, the ATE estimators (which

are functions of the observed ,) are random only because 7; is random.

b. Extending the Neyman-Rubin-Holland model to clustered designs

In RCTs of education interventions, random assignment is often performed at the group level (such
as a school or classroom) rather than at the student level. These group-based designs are common,
because education RCTs often test interventions that are targeted to the group (for example, a school
re-structuring initiative or professional development services for all teachers in a school). Thus, for
these types of interventions, it is infeasible to conduct random assignment at the student level, even
though interest often lies in intervention effects on students. In addition, clustered designs are often
used to minimize the spillover of intervention effects from treatment to control group students

through their interactions which could contaminate the estimated impacts.

To extend the Neyman-Rubin-Holland potential outcomes framework to clustered designs, we

follow Schochet (2013) and assume that the sample contains m groups—hereafter referred to as

schools—that are randomly assigned to a research condition, where the sample contains 7, students

from school j. Let ¥,(1) and Y¥;(0) be fixed potential outcomes for student i in school j, and let

Tj be the random assignment variable that equals 1 for treatment schools and O for control schools.

The ATE parameter for the clustered design, B, », can then be expressed as follows:

> w, (7, ()~ T,(0))
(43) ﬂclus,FP =L m ’

2

J=1
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4. Overview of design-based methods

where Yj(l) = (erzl Y;(1)/n;) and YJ (0)= (erzl Y;(0)/n;) are mean potential outcomes in the

. . . . n' .
treatment and control conditions for students in school J; w; = E 7 Wy are school-level weights;
i=

and w; are studentlevel weights.

The ATE parameter £, , is a weighted average of the ATE parameters in each school. A central

research question is whether interest lies in intervention effects for (1) the average student in the

sample (Wij =1 and w, =n;) or (2) a student in the average school in the sample (w,.j =(/n)) and
w; =1). This distinction will only matter if student sample sizes vary across schools and ATEs vary
by school size. The default weight in RCT-YES is w, =1, so that each school is weighted equally in
the analysis; this weighting scheme aligns with the random assignment mechanism. In this case, the

ATE parameter is [, pp = (Zj’:l (YJ (1)—2.(0))/ m). If interest lies instead in ATEs for the

average student, RCT-YES users can include a weight variable in the program input file where w;, =1

for each observation.

For the clustered design, the data generating process for the observed mean outcome for a school,

y;,can be expressed as follows:

(44 7,=T7,0)+(1-T)¥(0),

where y, = (Zzlylj /n;).

As discussed in detail in Chapter 7, this simple relation between the observed and potential school-

level outcomes can be used to develop estimators and standard errors for S, ,» that are

nonparametric in the sense that they do not require assumptions on the distributions of potential
outcomes. For a given total student sample size, the variances of the ATE estimators will typically be

larger for clustered than non-clustered designs.

c. Extending the Neyman-Rubin-Holland model to blocked designs

Blocked designs are common in education research, for example, because RCTs are often conducted
in several sites. In a blocked design, random assignment is conducted separately within each
subpopulation, such as a school district, school, classroom, or matched pair. Blocking will improve
the precision of the ATE estimators if the blocking is based on characteristics associated with the

potential outcomes of interest.
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4. Overview of design-based methods

[t is straightforward to extend the Neyman-Rubin-Holland model to blocked designs, although the
notation becomes more cumbersome. This can be done by (1) employing the potential outcomes
framework described above separately within each block and (2) averaging the block-specific ATE

parameters and estimators to obtain full population quantities.

Consider first the non-clustered, blocked design (Design 2) with & blocks where we use the subscript

“b” to indicate blocks for all the variables defined above. For example, 7, is the number of students

in the sample in block b, Y, (1) and Y, (0) are potential outcomes for students in block b, and so

on. Let S}, be a block indicator variable that equals 1 if student i is in block b and 0 for students in

other blocks. Using Equation (4.1), we can then define the ATE parameter for block b as follows:
— — 1] &

(45) IBnclus,b,FP = Yb (1) - Y}) (O) = Z (Ylb (]‘) B Yib (O)) ’

b i:S;,=1

where Y, (1) and Y,(0) are mean potential outcomes. The ATE parameter across all blocks can then

be expressed as follows:

h
Zwb nclus ,b,FP
— b=l

(46) ﬂnclus,blocked,FP - h ’
2 W
b=1

p

which is a weighted average of the block-specific ATEs with weights W, = Zr o« Wi -
Sip=

In RCT-YES, the default weights for the non-clustered, blocked design are w, =n, and w, =1 so
that blocks are weighted by their student sample sizes. In some designs where blocks are sites,
researchers may instead want to weight each block equally (w, =1; w, =(1/n,)). This approach

yields the ATE parameter for a student in the average site. This weighting approach might be
desirable if student sample sizes vary considerably across sites to avoid the large influence of some

very large sites on the pooled impact estimates.

The clustered design can incorporate blocks in a similar way (Design 4). Using (4.3) for the clustered

design, we can define the ATE parameter in block b as follows:
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4. Overview of design-based methods

my, _ _
z Wip (ij - ij 0))
2S5 =1
(47) ﬂclus,b,FP = atl my, ’
ij
j:th =1

where §,, is an indicator variable that equals 1 if school j is in block b and 0 for schools in other

blocks. The ATE parameter across all blocks can then be expressed as follows:

h
bz Wbﬂclus,b,FP
— b=l

(48) ﬂclus,blocked,FP - h

b=1

The default weights in RCT-YES for (4.7) and (4.8) are wy, =(1/n;,), w,, =1, and w, =m,, so that

blocks are weighted by their numbers of schools. Another weighting scheme for the FP model is to

weight blocks equally (w, = (1/(n;,m,)), w, =(1/m,), and w, =1) which can be implemented in
RCT-YES by including a weight variable in the input data file. Another option is to weight students

equally (w,, =1, w;, =n,, and w, =n,).

Importantly, the choice of how to weight the blocks will affect the overall impact findings only if
ATEs differ across blocks and are correlated with block size. To address this issue, RCT-YES provides
descriptive statistics on the extent to which impacts vary across blocks and conducts a joint chi-

squared test to assess whether the difference between the block impacts is statistically significant.

d. The super-population model

The original Neyman-Rubin-Holland model is a finitepopulation (FP) model that assumes that
potential outcomes are fixed for the study. Under this approach, the ATE parameter pertains only
to those students and schools at the time the study was conducted. Stated differently, the impact
findings have internal validity but do not necessarily generalize beyond the study participants. This
approach can be justified on the grounds that study samples are usually purposively selected for RCTs
for a variety of reasons (such as the site’s willingness to participate and suitability for the study based
on their populations and contexts). Similarly, students participating in the study may not be
representative of a broader population of students in the study sites, because they could be a
nonrandom subset of students who consented to participate in the study and who have available

follow-up data.

Under this fixed population scenario, researchers are to be agnostic about whether the study results

have external validity. Policymakers and other users of the study results can decide whether the
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4. Overview of design-based methods

impact evidence is sufficient to adopt the intervention on a broader scale, perhaps by examining the
similarity of the observable characteristics of schools and students included in the study to their own

contexts, and using results from subgroup and other analyses.

In contrast, under the super-population (SP) model, potential outcomes are assumed to be random draws
from super-population distributions. Thus, the impact findings are now assumed to generalize to the
super-population of students, schools, and sites that are “similar” to those included in the study. The
interpretation of this super-population will likely depend on the context (and may not exist), but
researchers should be aware that the estimation of treatment effects using the SP approach makes
the implicit assumption of external validity to a universe that is likely to be vaguely defined.
Nonetheless, this approach can be justified on the grounds that policymakers may generalize the
findings anyway, especially if the study provides a primary basis for deciding whether to implement

the tested treatments more broadly.

The literature has been growing on statistical methods to assess and improve the generalizability of
results from experiments that, in some contexts, could be used to help gauge the credibility of the
SP model assumptions (see, for example, Hedges and O’Muircheartaigh, 2012; Olsen, Bell, Orr, and
Stuart, 2013; Shadish, Cook, and Campbell, 2002; Stuart, Cole, Bradshaw, and Leaf, 2011; and
Tipton, 2013). These methods involve reweighting the experimental sample using baseline data so
that its composition is similar to that of a target population of interest. The reweighting process

requires comparable baseline data for study and target population members.

As we shall see in Chapters 5 to 8, the variances of the ATE estimators are typically larger for the SP
model than the FP model. This is because the ATE parameter for the SP model pertains to

intervention effects for a broader population, with an associated loss in statistical precision.

The default specification for RCT-YES is the FP model (except for matched pair designs). Users can
request the SP model by setting the SUPER_POP input variable equal to 1.

Under the SP approach, the potential outcomes are random variables drawn independently across
the sample. Under this model, the ATE parameter for the non-clustered, non-blocked design
(Design 1) is

(4.9) ﬂnclus,SP =E;(Y,(1)-Y,(0)),

where E, signifies the expected value with respect to the simple random sampling of individuals

(/) from the student super-population. Thus, S

n

ws.sp 15 the expected treatment effect in [. This

SP parameter is also referred to in the literature as the population average treatment effect (PATE;

see Imbens, 2004).
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As discussed in Imai, King, and Nall (2009) and Imbens (2004), the SP model is more complex for
clustered than non-clustered designs, because assumptions must be made about the multilevel sampling
of schools and students from broader populations. Specifically, under the clustered SP model, it can
be assumed that (1) schools are fixed for the study, but that students are randomly sampled within
the study schools from a broader student population (the cluster average treatment effect [CATE]);
(2) schools are randomly sampled from a broader school population, but that the student sample is
fixed for the study (the unit average treatment effect [UATE]; or (3) both schools and students are
randomly sampled from broader populations (the population average treatment effect [PATE] for

clustered designs).

Because of the subtleties of deciding between these various SP parameters, the default in RCT-YES
is the PATE parameter (the assumed random sampling of both schools and students), but the

CATE_UATE option can be used for estimating the CATE and UATE parameters (see Table 2
above). The PATE parameter for the clustered, non-blocked design (Design 3) is as follows:

E(w,[Y;,(D-Y,(0)]))

(4.10) ﬂclus,PATE =L (Yy (1)- Yij 0))= E ()
s\W;

where w; is the weight for school j, and Ejg is the expected value of the treatment effect in the

super-population of students (/') within the super-population of schools ($).

In RCT-YES, the default specification for the school-level weight in (4.10) is w, =1. Users, however,

can select different weighting schemes using input weight variables. In the SP context, if interest lies

in the intervention effect for the average student in §, one choice for w, recommended by Imai,

King, and Nall (2009) is a measure of the size of the student universe in each school (assuming this

universe is finite).

The PATE, CATE, and UATE parameters pertain also to blocked SP designs (Designs 2 and 4). By
default, RCT-YES estimates the PATE parameter where blocks are assumed to be randomly sampled
from a broader block population. For instance, if blocks are school districts, the PATE assumption
would imply that the study school districts are representative of a larger population of similar school
districts that could be targeted for the intervention (perhaps in the same state). This assumption
could be realistic if the study contains a large number of geographically dispersed school districts
that could be targeted for the intervention. This design is often referred to in the statistics literature

as a random block design.
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The PATE parameter for the non-clustered, blocked SP design (Design 2) is

(w,[Y,()-Y,(0)])
Ez(w,) ’

E
(4 1 1) ﬂnclus,blocked,PATE = E]B (Yzb (1) - Yib (O)) =1

where Ej, represents the expected value with respect to students in [ within the super-population
of blocks (B). In RCT-YES, the default weight is w, =mn,, but a broader measure of the block

population size might be more appropriate for the SP model (assuming this population is finite).
Another possible weighting option found in the literature is to set the block weight equal to

[(1/n,)+(1/n,)]", where n,, and ng, are the respective number of treatment and control

students in the block (a form of precision weighting). The corresponding PATE parameter for the
clustered, blocked SP design (Design 4) is g5 (¥;, (1) =Y, (0)) .

e. Reasons for adopting design-based rather than model-based methods

Education researchers typically use model-based, random effects approaches such as hierarchical
linear model (HLM) methods (Raudenbush and Bryk 2002) to analyze RCT data from multilevel
designs. We adopted a design-based framework for RCT-YES for several important reasons. First,
design-based methods do not require assumptions on the distributions of potential outcomes (only
finite moment assumptions), whereas the model-based approaches often assume multilevel
normality that must hold to produce consistent estimates.

Second, design-based approaches produce closedform expressions for the ATE estimators, unlike
HIM methods that require iterative, numerical maximum likelihood procedures for estimation.
Thus, the estimators under the design-based approach are more transparent and easier to understand
(and to program into the computer) than the more typical approaches used in education research.
Although some of the formulas presented in this report look complicated due to cumbersome
notation, they are all based on simple means and cross-products of the data that can be calculated using

statistical software packages in common use.

Third, the model-based approaches are SP models that implicitly assume that the impact findings
can be generalized to a vaguely defined super-population of study units. The design-based approach,
however, allows the analyst to explicitly decide whether it is more realistic to assume internal validity
(the FP model) or external validity (the SP model). Fourth, for clustered designs, data requirements
are fewer for the design-based approach because the analysis can be conducted using data on cluster-
level averages rather than individual-level data. Finally, unlike commonly-used model-based
approaches, the Neyman-Rubin-Holland framework allows for heterogeneity of treatment effects,

which leads to variance expressions that differ for the treatment and control groups, and that differ

for the FP and SP models.
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4. Overview of design-based methods

The main advantage of the model-based approach over the design-based approach is that it could
yield more precise ATE estimates. However, this will only necessarily occur if the model is specified
correctly. With misspecification, the model-based approaches could yield biased variance estimates.
The design-based approach instead relies primarily on the randomization mechanism to develop
consistent estimators that do not rely on parametric model assumptions regarding the structure of
model error terms and their distributions. Thus, the design-based approach emphasizes robust
inference and is less concerned with maximizing precision, although simulation findings from

Chapter 9 suggest that precision losses are likely to be small using the design-based estimators.

It is useful to briefly compare the design-based and HLM approaches more formally. Consider a
standard simple differences-in-means estimator for the clustered design for the SP model with school-

level randomization:

mr el

(412) ﬂclus,SP - my m ’
Wi INT
JT;=1 JT;=0

where m, and m are the number of treatment and control schools in the sample, respectively,
and other terms are defined as above. The key difference between the model-based and design-based
approaches is the choice of w;. The HLM approach selects weights to maximize the precision of the
impact estimates. These weights are w, = n_/.[n_].O'u2 +02]", where ¢ is the between-school (Level 2)
variance component and o is the within-school (Level 1) variance component of the error terms
in the HLM model. To apply this method, it is necessary to obtain consistent estimates of ¢~ and

o’ , which requires the correct specification for the model error terms and their distributions. In

contrast, the weights for the design-based approach reflect known (or assumed) study selection
probabilities from study super-populations, and thus, are proportional to cluster-level population

counts, which do not rely on a model.

f. The use of robust standard errors as an alterative

[t is common in the analysis of RCT data to use standard errors from OLS models that are robust
to model misspecification, and thus, that could accommodate the implied error structure of the
RCT design. These estimators include robust, heteroscedasticity-consistent standard errors for non-
clustered designs (Huber, 1967 and White, 1980) and extensions to clustered designs (Liang and
Zeger, 1986). These estimators are commonly referred to as HW standard error estimators. There is

a growing literature on the statistical properties of these estimators, including their small-sample
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4. Overview of design-based methods

weaknesses and ways to compensate for them (see, for example, Angrist and Pischke, 2009; Hausman
and Palmer, 2011; Imbens and Kolesar, 2012; and Mackinnon, 2011).

The HW estimators are popular in certain social science disciplines (such as economics) and share
some common features as design-based estimators. However, we did not adopt the HW estimators
for RCT-YES for several reasons (in addition to those discussed in the last section). First, there is
some controversy about whether the HW estimators are supported by randomization. For example,
Freedman (2008) argues that the HW estimators do not conform to the Neyman-Rubin-Holland
model, whereas Lin (2013) proves that the HW estimators are asymptotically equivalent to the
design-based FP estimators for the non-clustered design. Second, the attractive feature of the design-
based approach is that the randomization mechanism defines the model error terms. Thus, variance
estimators for the design-based approach are derived directly from this known error structure. In
contrast, the HW estimators provide robust variance estimates for error structures that are unknown.
Finally, simulation findings presented in Chapter 9 and summarized in the next section suggest that
the design-based variance estimator performs well, so there is little empirical justification for using
the HW estimator.

In sum, we adopt the design-based approach because it aligns directly with the theory underlying
experiments. Similar to the HW estimators, our variance estimators are based on asymptotic results.
Thus, an important future research area is to examine the extent to which the literature on the small-
sample properties of the HW estimators and the associated bias-reducing adjustments are applicable

to the full range of design-based variance estimators considered in this report.

g. Summary of simulation analysis findings

This section summarizes simulation results from Chapter 9 to examine the statistical performance
of the design-based estimator and two other commonly used RCT estimators: (1) the HLM
maximum likelihood estimator and (2) the HW estimator that we refer to as a robust cluster standard
error (RCSE) “sandwich” estimator. The simulations are conducted for a clustered RCT design
where small sample biases are likely to be more prevalent than for non-clustered designs. We assume
that (1) schools are the unit of random assignment, (2) student test scores are the outcome of interest,
and (3) ATEs are estimated using both regression models that control for pretest scores to improve
the precision of the estimates and models that exclude the pretests. For the simulations, we employ
real-world model parameter assumptions and consider a range of distributions for the potential
outcomes, including normal distributions (that conform to the HLM assumptions) and bimodal and

mean-centered chissquared distributions to allow for some skewness in the distributions.

The simulation findings suggest that the design-based ATE estimator performs well for clustered
education RCTs for models that include or exclude pretest scores as a covariate. Biases of the
estimated ATEs are negligible if the sample contains at least 8 schools Furthermore, with a sample

of at least 12 schools, the empirical standard errors produced by the design-based approach align
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4. Overview of design-based methods

with their true standard errors, and are comparable to those for the HLM and RCSE estimators.
Similar findings also pertain to the clustered, blocked design. These results suggest that the design-
based approach—which is fully based on the random assignment mechanism and simple asymptotic
variance approximations—is likely to perform well under a range of RCT settings. Note that these

simulation results do not address statistical power.

h. Design assumptions

The design-based estimators in RCT-YES considered in this report all rely on several key assumptions.
First, they rely on the stable unit treatment value assumption (SUTVA) (Rubin, 1986), which has
two components: (1) the potential outcomes of a student depend only on that student’s treatment
assignment and not on the treatment assignments of other students in the sample, and (2) a student
offered a particular treatment cannot receive different forms of the treatment. SUTVA implies that

there is a single value of each potential outcome associated with each treatment for each student.

To describe the first SUTVA “no interference” condition more formally, we first define Y,(T,,,,)

for the non-clustered design to be the potential outcome for a student given the random vector of

treatment assignments, T for all students in the sample. Similarly, for the clustered design, let

nclus

Y,(T,,,) denote the potential outcome for a student in school ;j given the random vector of all

lus

school treatment assignments, T, . We can then state the first SUTVA condition as follows:

clus *

Assumption 4.1: SUTVA (No interference): Under the non-clustered design, for any two random
and T, ., if T, =T/ for student i, then Y,(T,,.) = Y,(T!

) = Yij(Tc,lus) °

assignment vectors T ¢

). Similarly, under the

clus

clustered design, if T, =T for school j, then Y, (T,

lus

SUTVA allows us to express Y.(T,

clus lus

) as Y(T) and Y, (T,,,) as Y,(T,). Importantly, for blocked

designs, SUTVA pertains to each block separately.

In the education context, the plausibility of SUTVA will likely depend on the nature of the
intervention and the extent of interactions between students and educators assigned to different
treatment conditions. For instance, SUTVA is likely to be plausible for clustered designs where
schools in geographically dispersed areas are randomly assigned to a treatment or control condition,
because there is likely to be little meaningful interaction between students and educators across
schools. SUTVA, however, may be less plausible for RCTs where, for example, students are
randomly assigned within schools, in which case the treatment status of one student could affect the
outcomes of other students in the school due to peer effects. In these cases, SUTVA could also be
violated if the nature of the treatment depends on the types of students assigned to the treatment

group (for example, their academic ability). The second SUTVA condition could also be violated if
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4. Overview of design-based methods

there is considerable teacher turnover so that treatment group students receive different “versions”

of the treatment over time.

Without SUTVA, statistical inference for RCTs becomes more complex because the ATE
parameters discussed above become functions of specific treatment assignment allocations and types
of treatments offered to students. Hong and Raudenbush (2006) discuss statistical modeling
methods for estimating ATEs to account for violations to SUTVA.

The second assumption that underlies the considered designs defines random assignment in terms
of the independence between treatment status and potential outcomes (see Imbens and Rubin,

forthcoming, Chapter 3):

Assumption 4.2: Randomization: T, L (Y(1),Y(0))for the nonclustered design, and 7, L
(Y,;(1),Y,(0)) for the clustered design for all I and j, where the probability of treatment assignment for each

student (cluster) is between O and 1.These independence conditions hold conditional on all covariate values

defined by precrandomization characteristics. In addition, for the blocked design, the independence conditions

hold within each block.

The final assumption that we invoke specifies finite first and second moments for potential outcome

distributions:

Assumption 4.3: Finite first and second moments: To obtain expected values and variances for the

considered  estimators, we assume E(Y, (1)) <o, E(Y,(0)<w, 0<Var(Y,(1))<w, and

0 <Var(¥,,(0)) <o for all considered potential outcome distributions.

i. Brief summary of the considered estimators

Chapters 5 to 8 of this report provide a detailed discussion of design-based estimators for Designs 1
to 4 for the FP and SP models. The impact estimators for all designs are based on simple differences
in mean outcomes between the treatment and control groups or regression models that adjust for
baseline covariates using standard ordinary least squares (OLS) methods. The main difference
between the impact estimators across the designs is the choice of weights for pooling estimates across
blocks and/or clusters (if pertinent). In addition, all ATE estimators have asymptotically normal

distributions which RCT-YES uses for hypothesis testing.

The variance estimators, however, differ across designs and model specifications, and much of our
discussion is focused on this topic. To help readers navigate the myriad variance estimators that we
present, for reference, Table 4 displays equation numbers in the text for the variance estimators

considered in this report for full sample and subgroup analyses.
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4. Overview of design-based methods

Design and model
specification

1. Non-clustered, non-blocked

Simple differences-in-means
estimators

Full samplea

Subgroupsa

Table 4. Equation numbers for variance estimators, by design and model specification

Regression
estimators

Full samplea

Subgroupsa

FP model (default)
SP model

2. Non-clustered, blocked

5.10; 5.48wi
5.10¢; 5.48w

5.33; 5.50w
5.33¢; 5.50%

5.26a; 5.49wi
5.26a¢; 5.49v

5.38}; 5.51wi
5.38; 5.51%

FP model
BLOCK_FE=0 (default) 6.4 and 6.5; Text 6.11 and 6.113; 6.16; Text after 6.19; Text after
on page 73w Text on page 73w 6.16w 6.19w
BLOCK_FE=1 6.9; 6.14w 6.13 6.17; Text after 6.20; Text after
6.17w 6.20w
SP model
PATE (default for matched 6.25 6.25 for subgroups 6.28 6.30
pair designs)
UATE 6.25 6.25 for subgroups 6.28 6.30

CATE (BLOCK_FE=0)

Same as FP modele

Same as FP modele

Same as FP modele

Same as FP modele

CATE (BLOCK_FE=1)

3. Clustered, non-blocked

Same as FP model

Same as FP model

Same as FP model

Same as FP model

FP model (default) 7.12; Text on 7.16; Text on 7.22 7.24
page 94w page 94w
SP model
PATE 7.30 7.30 for subgroups 7.32 7.32 for subgroups
UATE Same as FP modele Same as FP modele Same as FP modele Same as FP modele
CATE Same as PATE Same as PATE Same as PATE Same as PATE

4. Clustered, blocked

FP model
BLOCK_FE=0 (default) 8.3 8.3 for subgroups 8.9 8.12
BLOCK_FE=1 8.5 8.7 8.10 8.13

SP model
PATE (default for matched 8.16 8.16 for subgroups 6.28 using cluster 6.30 using cluster

pair designs)
UATE
CATE (BLOCK_FE=0)

Same as PATE

Same as FP modele

Same as PATE

Same as FP modele

averages
Same as PATE

Same as FP modele

averages
Same as PATE

Same as FP modele

CATE (BLOCK_FE=1)

Same as FP model

Same as FP model

Same as FP model

Same as FP model

*The superscript “e” denotes that the FP model heterogeneity term is excluded from the variance estimator, the superscript “i” denotes
that the FP model heterogeneity term is included (subtracted) from the variance estimator, and the superscript “w” denotes Design 1

and 2 variance estimators that incorporate optional weights.
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5. Design 1: Non-clustered, non-blocked

5. Deslgn 1: The non-clustered, non-blocked design

This chapter discusses design-based methods for the simplest RCT design in RCT-YES (Design 1),
where students are randomly assigned to a treatment or control group within a single population
such as a school district or school. An example of this design is the Evaluation of the School Choice
Scholarships Program (Mayer, Peterson, Myers, Tuttle, and Howell, 2002) where volunteer students
in New York City were randomly assigned to a treatment group who received a school voucher of

up to $1,400 per year to attend private schools or a control group who did not receive the voucher.

This chapter discusses the methodological topics considered in this report in much more detail than
in other chapters. We adopt this presentation to fix concepts and because methods for the simplest
design lay the foundation for the analysis of more complex designs. For the discussion, we assume
that the analysis is conducted using only those outcomes, subgroups, and covariates that pass the

specification checks discussed in Chapter 3 to help minimize PII disclosure of sensitive information.

a. Finite-population (FP) model without baseline covariates

Using the notation from Chapter 4, we consider an RCT where n students from a single population

are randomly assigned to either a single treatment or control condition. The sample contains
n, = np treatments and 1, =n(1— p) controls where p is the sampling rate to the treatment group
(0< p<1). Under the FP model, it is assumed that the n students define the population universe.
As before, let Y/(1) and Y;(0) be potential outcomes in the treatment and control conditions,
respectively, that are assumed to be fixed for the study. The treatment status indicator variable is

denoted by 7;. The ATE parameter for this FP design is 3, ., p = (z; Y.(1)-Y.(0))/n).

The data generating process for the observed outcome, y;,, is
S0y =TY,(1)+1-T)Y,(0).

This simple relationship between the observed and potential outcomes is used to develop design-

based estimators for S, . In this expression, y; is random only because 7; is random due to

random assignment. Note that because treatment and control sample sizes are fixed, the 7;

indicators are not independent across students.

Consider the simple differences-in-means estimator for 3, sp:

1 n(l-p)

52) f =(V,—P.)=—
( )ﬂnclus,FP (yT yC) szlyl n(l p) zTZOy
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5. Design 1: Non-clustered, non-blocked

To show that this estimator is unbiased, we use (5.1) to re-write S, , . .» as follows:

ﬂAnclus,FP nlpz i 1(1)_ )Z(l T)Y(O)

Because 7 is independent of the potential outcomes due to random assignment (Assumption 4.2),

4

the expectation of 2, ctus. P 15

(5.3) Emm,ﬁ)— ZE (T)Y,(1

- ;; V(D) ~Y0) = B

where E, denotes the expectation taken with respect to the randomization distribution (R),

keeping fixed the potential outcomes. The second equality holds because E(T;) = P(T, =1) = p and
E(1-T)=(1-p).

Consider next an ordinary least squares (OLS) regression model for (5.1) that yields the simple
differences-in-means estimator, but simplifies some of the proofs presented in this report for other
designs (especially those for models that include baseline covariates). Following Freedman (2006),
Schochet (2010), and Yang and Tsiatis (2001), we construct a regression model implied by the
Neyman-Rubin-Holland model by re-writing (5.1) as follows:

(54) Yi= ﬂO + nclus,FP (7: - p) + u;, Where

By = pY()+(1-p)Y (0),
ﬂnclus,FP = Y(l)—Y(O),
u; = T,(Y,() =Y (1) +(1-T)(¥;(0)~ Y (0)).

Note that using (7; — p) rather than 7} does not change the OLS estimate of £, z», but simplifies

the proofs.

In what follows, it is useful to instead express the model “error” term, u, , as follows:

(5.4a) u,=a;+7.(T,— p), where
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5. Design 1: Non-clustered, non-blocked

o= p(Y,(1)=Y (D) +(1- p)(¥,(0)- Y (0)),
7, =(L(1) =Y (1)~ (%(0)- Y (0)).

In this formulation, #; is a function of two terms: (1) ¢, the mean-centered expected observed

outcome for the student; and (2) 7;, the mean-centered studentlevel treatment effect.

The model in (5.4) and (5.4a) is unusual because it does not satisfy key assumptions of the OLS

model. Specifically, u#, does not have mean zero, and, to the extent that 7, varies across subjects, u,

is heteroscedastic, (weakly) correlated across subjects, and correlated with the regressor (7, — p):

Ex(u) =0, VarR(ui):Tizp(l_p)’ COVR(”i“j):_Tifjp(l_p)/(n_l)a
ER[(T; = p)u;]1=7,p(1= p).

To derive the OLS estimator for the regression model, define the 1x2 vector of explanatory variables

for each student as Z =[1 7] where T =T —p. The OLS estimator for the parameter vector

(By B rp) is then (Z L LZ) (Z _,Z;,) - Note that the matrix (Z;i:il) is block diagonal
because Zi:lﬂ =0. Note also that Zi:l 7;2 =np(1-p). Thus,

2Ty 2 L@y +(1-T)y)
np(l-p) np(l-p)

55 Bowwrr = T Ty, = =(Vr = Ve),

which is the simple differences-in-means estimator. Thus, the OLS and simple differences-in-means

estimators are equivalent and have the same statistical properties.

We now state a wellknown lemma regarding the statistical properties of 8, . .. The proof is

provided in Appendix A (Imbens and Rubin, forthcoming provides references for alternative
proofs). We provide a proof of the lemma because it forms the basis for the proofs for other new
estimators considered in this report, and allows us to develop all estimators using a common

mathematical framework. We follow this approach for the remainder of the report.

Lemma 5.1. Let = (v, —7y.) be the simple differencesin-means estimator or, equivalently, the OLS
nclus,FP yT yC y
estimator for the ATE parameter f3, ,  wp. Then, B . .. is unbiased with variance:
S 2 Sc 2 S 2

(5 6) VarR (anclus FP) = . ’ where
np n(l p) n
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:_ 1 S — V12 »_ 1 < _TONE an
Sy —n_llZ:l:(Y,-(l) TP, 88 = 2 (00 =T (0)7, and
S = Y = SO - F O[O - T ).

and where the variances are taken with respect to the randomization distribution. Furthermore, as I increases

to infinity for an increasing sequence of finite populations, assume that:
(5.7 S;—>Sp, S-Sk SP-S

where ST2, §Cz and §TZ are fixed, nonnegative, real numbers. Then, B , ., is asymptotically normal with
asymptotic variance:

A s S 57

_9r c
(58) ASyVarR (IBnclus,FP) - + ——.
np n(l-p) n
2 . . . .

The S; and S terms in (5.5) and (5.7) pertain to the extent to which potential outcomes vary across
students. The S? term pertains to the extent to which treatment effects vary across students. Note

that if student-level treatment effects are constant, S” =0 and S; = S¢.

. . ) @2 s . . .
Unbiased estimates for Sy, S;, S&, and S can be obtained using sample variances for the

2 .
treatment and control groups, s, and s;, respectively:

1 np _ 1 n(l-p) _
5.9 2 = . — 2 2 = L — 2 .
( ) ST np— iél(yl yT) and SC n(l—p)—l ,':TZ::O (yl yC)

The variance terms pertaining to the individual treatment effects, S” and S’ are not identifiable

because it is not possible to observe an individual in both the treatment and control conditions. '
Note however, that S > (S, —S.)’. Thus, RCT-YES uses the following upper bound estimator for

the variance expressions in (5.5) and (5.7):

. . . . . . 2 - . 2 noA2
!'Schochet (2009) discusses several approaches using baseline covariates for estimating S° and S~ using s. = E T /(n—1),
. . .

where 7, is an estimate of the treatment effect for student i. These methods include propensity score matching where treatments are

matched to controls, estimating a regression model with a large number of subgroup-by-treatment status interaction terms, and

assuming that the intervention does not change the rank ordering of the outcome measures within each research condition.
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- 2 s (s, —5.)*
5.10) Va =Ly € __MT77%c)
( ) arg (ﬂnclus,FP) np I’Z(l—p) n

In the remainder of this document, we refer to the final term in (5.10) as the “FP heterogeneity

term.”

In the calculations, RCT-YES estimates the treatment group sampling rate using p =n, /(n, +n.).
The estimation of p is discussed more fully in Section 5h where we discuss the treatment of missing

data.

Note that Lemma 5.1 applies to both continuous and binary outcomes. RCT-YES does not estimate
logit (or probit) models for several reasons. First, randomization does not support the use of these
nonlinear models (Freedman, 2008). Second, the treatment effect parameter differs for logit models
with and without covariates, and models with covariates tend to reduce precision (see, for example,
Schochet, 2013). Finally, estimated treatment effects in log odds units are difficult to interpret for
some outcomes in social policy research, and translating the estimated logit parameters into more
interpretable impacts on proportions (rates) complicates variance estimation, especially for clustered

designs and models with covariates.

b. Super-population (SP) model without baseline covariates

The FP model can be extended to the SP model (see, for example, Imbens and Rubin, 2015;
Schochet, 2010; and Yang and Tsiatis 2001). Under this approach, the n subjects are assumed to be
a simple random sample from a student super-population, which, for simplicity, we hereafter assume

is infinite (which provides conservative variance estimates if the sample universe is instead assumed

to be finite). It is assumed that the potential outcomes, Y(1) and Y;(0), for the n study students are

random draws from potential treatment and control outcome distributions in the super-population,
with finite means, variances, and covariances. These two outcome distributions also define the

distribution of subject-level treatment effects in the super-population. As before, the sample contains

n, = np treatments and 1, =n(1— p) controls where p is the sampling rate to the treatment group

O<p<l]).

The ATE parameter for the non-clustered, non-blocked, SP model is 8, . sp = £;(¥;(1) = ¥,(0)),

where E, signifies the expected value with respect to the simple random sampling of individuals

from the student super-population (7).
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Consider the simple differences-in-means estimator from above, ﬁAnduS’SP =(¥; —¥.). Following
Imbens and Rubin (2015), we can show that this estimator is unbiased by using the law of iterated

expectations. First, we calculate the expectation of S, with respect to the randomization

distribution, conditional on the n students who are selected for the study and their fixed potential

outcomes (denoted by the vectors Y(1) = (¥;(1), ¥, (1),....Y, (1)) and Y(0) = (¥;(0), ¥,(0),...,Y (0))).

Second, we average over random draws of n students from [ . Using this approach, we find that:
. . 1 &
(5.11) Eyy (ﬁncluS,SP) =E, (ER (IBnclus,SP 1 Y(1),Y(0),n)) = ; ZEI (Y, - K(O)) = ﬁnclus,SP ’
i=1

where the second equality holds using (5.3) for the FP model. This proves that ﬂAnduS’ p is unbiased.

We can use a similar conditioning approach to calculate the variance of S, ¢ using the law of

total variance where, to simplify notation, we do not display the conditioning set (Y (1), Y(0),%):

(5 12) VarR[ (ﬁnclus,SP) = EI (VGVR (Bnclus,SP )) + Val’[ (ER (Bnclus,SP )) .

Using variance results for the FP model in (5.6), we have that

2 2 2
A o} o3 o
(5.13) E,(Varg(B, s.sp)) = —+——L———L,

np n(l-p) n

where o, =E,(S;) is the variance of Y(l), of =E,(S}) is the variance of Y(0), and

ol =E,(S?) is the variance of studentevel treatment effects in the super-population.

Similarly, because the differences-in-means estimator is unbiased for the FP model, we have that

Var, ;()-Y,(0) _ oz,
n

(5.14) Var,(Eg(Buss0)) = n

Thus, collecting terms in (5.13) and (5.14), we find that

2

(5.15) Vary (Bw.sp) =2+
=

2
O
n(1-p)
This is the standard variance formula that is typically used in education research for RCTs using

simple differences-in-means estimators, except that different variances apply for the treatment and

control groups. Note that this variance does not contain the heterogeneity term, o7, /n, that reduces
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the variance formula for the FP model. Thus, in principle, variances are larger under the SP model
than FP model, because the SP parameter pertains to a broader population, with an associated loss
in statistical precision. The variance in (5.15) can be estimated using (5.10), excluding the final FP
heterogeneity term. Note that if the sample universe is instead assumed to be finite, the heterogeneity

term does enter the variance formula and is multiplied by n/ N, where N is the size of the universe.

As with the FP model, we can obtain equivalent results for the SP model using an OLS regression
model. Let u, =E,(Y;,(1)) and u, =E,(¥,(0)) denote potential outcome means in the super-
population, and let o, = E,(Y,(1)— )’ and o, = E,(Y.(0)— #,)* denote super-population

variances. We can then construct a regression model by re-writing (5.1) as follows:
(5.16)  yi = iy + Betus.sp (T, — P) + 0., where

Ho = Pz + (1= p) iy s

Brctus.sp = (Hzr — Hey)»

0, =a,; +7,(T, - p),

oy = p(Y;(1) = tty) + (1= p)(¥,(0) = piy ),
ty =X (D) = pty) = (Y:(0) = iy )-

This regression model satisfies the usual OLS assumptions except that error variances differ across

the two research groups. In order to see this, note that similar to the usual OLS model, the model

error term, @, , has mean zero and is uncorrelated with (7, — p):

(5.17) Ex(0)=Eg () + Eg[7,(T, = p)| T, =lp+ Eg [7,(T, — p) | T, = 0](1- p) =0,
Enl(T; - p)0.]=Ex[(T; - p)6, | T, =1]p+ Ex, [(T; — p)6; | T, = 0)(1- p) = 0.

Furthermore, the variance of @, differs for the treatment and control groups and is uncorrelated

across individuals:

(5.18) Vary (6,|T, =1)= Ey [ [a, +7,(T,— p)P | T, =1]|= 7,

Vary (61T, =0) =%,
Covy(6,.0,) = Eg,(6,0,) = 0.

1271

A

Similar to the FP model, the OLS estimator for the SP model is B, ., s» = (¥; —¥c). We now state

a lemma regarding the statistical properties of 3 for the SP model. The proof using the

nclus ,SP

regression approach is provided in Appendix A and follows Schochet (2010).
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Iy

Lemma 5.2. Let ﬂndus’sp =y, —)_/C) be the simple differencesin-means or OLS regression estimator for

A

B cius.sp under the SP model in (5.16). Then, B, sp is unbiased and asymptotically normal with variance:

R 2
(5.19) Vary (B )= t—2—
np  n(l-p)

Unbiased estimates for o7, and &2, can be obtained using s7 and s2 defined in (5.9) above.

c. Hypothesis testing

The estimators for the FP and SP models are asymptotically normally distributed and their variances
can be approximated by chi-squared distributions. Thus, RCT-YES uses tstatistics and associated t
distributions to test the null hypothesis of a zero average treatment effect against the alternative that
it differs from zero. The null hypothesis is that intervention effects average to zero, but could differ

across sample members (that is, they could be positive for some students and negative for others).

To test Hy: B, pp =0 versus H : 8, #0 for the FP model, RCT-YES uses the following test
statistic:

~

ﬂnclus,FP — yT - -)7C
\/V&FR (Iénclus,FP) \/(SZ% / nT) + (Sé / nC) - ((ST - SC )2 / n)

(520) tnclus,FP =

and similarly for the SP model. RCT-YES applies a two-tailed test for hypothesis testing to be agnostic

about whether the intervention will improve all considered outcomes. The program uses a 5 percent

significance level (a =.05) by default, but it can be changed using the ALPHA_LEVEL input
variable. For simplicity, the ttests are conducted using (1, +n, —2) degrees of freedom.> RCT-YES

reports p-values from hypothesis tests for each outcome that is input into the program as well as
estimated standard errors. The program does not report confidence intervals, but we urge program

users to examine them to help interpret evaluation findings. Confidence intervals around the

2 We considered using the Satterthwaite (1952) degrees of freedom approximation for two-sample ttests with unequal population
variances, but these approximations become complex for regression estimators with baseline covariates. We also decided not to use
the Bell and McCaffrey (2002) degrees of freedom adjustment developed for robust HW standard errors, because they may not apply
to all our considered design-based estimators. Furthermore, Imbens and Kolesar (2012) show that these adjustments only improve
inferences in small samples for unbalanced RCTs where sampling rates differ markedly for the treatment and control groups, which
is rare for social policy RCTs. These adjustments may be employed in future versions of RCT-YES after more research is conducted

to assess their performance for the full range of designs considered in this report.
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estimated ATEs can be calculated by multiplying the standard errors by 7' (1—{a/2}), where T

is the inverse of the t distribution function with (7, +n, —2) degrees of freedom.

RCT-YES does not conduct randomization tests (also known as permutation or Fisher exact tests) to
test the sharp null hypothesis of no intervention effects for any individual: H,:Y,(1)=Y,(0) for
i=1,2,...n. Under this approach, the exact distribution of the test statistic under the null

hypothesis can be obtained by calculating the test statistic for each possible permutation of
individuals to the treatment and control groups and locating the observed test statistic in this
distribution to calculate p-values. The test statistics can include a wide range of statistics measuring
treatment-control differences in outcome values, such as differences in means, the natural logarithm
of means (or other variable transformations), medians or other quantiles, or mean ranks. This
approach has the advantage that it does not rely on asymptotic theory for hypothesis testing.
Furthermore, statistical inference for this approach may have greater robustness and statistical power
under various alternative hypotheses in the presence of outliers in the outcome data and if treatment
effects are not additive. The current version of RCT-YES does not adopt this approach because of
current IES standards for significance testing under RCT designs. However, this approach may be

available in future versions of RCT-YES.

d. Multiple comparisons adjustments

In RCTs, researchers often conduct multiple hypothesis tests to address key impact evaluation
questions. In such instances, separate t-tests for each contrast are often performed to test the null
hypothesis of no impacts, where the Type I error rate (statistical significance level) is typically set at
a =5 percent for each test. This means that, for each test, the chance of erroneously finding a
statistically significant impact is 5 percent. However, when the hypothesis tests are considered
together, the “combined” Type I error rate could be considerably larger than 5 percent. For example,
if all null hypotheses are true, the chance of finding at least one spurious impact is 23 percent if 5
independent tests are conducted, and 64 percent for 20 tests. Thus, without accounting for the
multiple comparisons being conducted, users of the study findings may draw unwarranted

conclusions.

The primary output from RCT-YES presents p-values from ttests that do not correct for multiple
comparisons. However, RCT-YES also denotes in the output whether statistically significant impact
estimates remain statistically significant after applying the Benjamini and Hochberg (1995) multiple
comparisons corrections procedure. These corrections are made for impact estimates for the full
sample (that are typically the confirmatory analyses for education RCTs), but not for baseline
subgroup analyses (that are typically exploratory analyses). The multiple comparisons corrections are
made for all outcome variables within an outcome domain (a class of similar outcomes), but not across

outcome domains.
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The Benjamini and Hochberg (1995) method controls the false discovery rate (FDR), which is the
expected proportion of all rejected null hypotheses that are rejected erroneously. Stated differently,
the FDR is the expected fraction of significant test statistics that are false discoveries. Benjamini and

Hochberg showed that when conducting N tests, the following four-step procedure will control the
FDR at the & level:

e Conduct N separate t-tests, each at the common significance level a .

¢ Order the pvalues of the N tests from smallest to largest, where p, < p,, <...< p,, are

the ordered p-values.

Define k as the maximum j for which p,; < %a .

* Reject all null hypotheses H,;), j=1,2,...,k. If no such k exists, then no hypotheses are

rejected.

This sequential procedure, which has become increasingly popular in the literature, is easy to use
because it is based solely on p-values from the individual tests. In addition, it is used by IES’s What
Works Clearinghouse (WWC) to correct pvalues for multiple testing in reviews of education

research. Schochet (2009) discusses multiple comparisons issues in more detail.

e. FP and SP models with baseline covariates

In education RCTs, researchers often estimate impacts using regression models that control for
covariates that pertain to the pre-randomization period. The use of baseline covariates can improve
the precision of the estimated ATEs by explaining some of the variance of the outcome measures,
and can control for observable baseline differences between the treatment and control groups due
to random chance or missing data. The inclusion of baseline covariates to improve the precision of
estimated ATEs is particularly important in clustered education RCTs where power is often a
concern (see, for example, Schochet, 2008). The literature has shown that models that include pre-
intervention measures of the outcomes as covariates (for example, achievement test scores in the
period prior to random assignment) are especially strong predictors of student achievement

outcomes in education research, and may be available in SLDS administrative records data.

Covariates can be included in RCT-YES using the COVARIATES input variable (see Table 2 in

Chapter 2). A separate list of covariates can be specified for each outcome domain and subgroup.

This section extends the Neyman-Rubin-Holland framework to allow for the inclusion of baseline
covariates in the regression models in (5.4) and (5.16) for the FP and SP models. For the analysis,

we define x;to be a 1xv vector of fixed baseline covariates. Because of randomization, x; is not

indexed by treatment or control status. The V covariates could include pre-intervention measures of

40



5. Design 1: Non-clustered, non-blocked

the outcomes and could be binary or continuous. We assume that students are randomly assigned

independently of x;, but blocked designs are considered later in this report.

Importantly, the covariates, x,, are irrelevant variables in (5.4) and (5.16), which define the true
models under the Neyman-Rubin-Holland framework. Thus, the ATE parameters considered above
for the FP and SP models without covariates pertain also to the models with covariates. This differs
from typical OLS models where the true behavioral model is assumed to include the covariates. In

addition, we do not need to assume that the true conditional distribution of y, given x, is linear

in x,, as is the case with the usual OLS model.

In what follows, let z; = (1 T} X;) be a vector of model explanatory variables. The multiple regression

(MR) estimator for both the FP and SP models can then be expressed as follows:

n n
~ _ ~ _ _1
52D Brcus.r.rp = Breus sr.sp = [(Z;,Z;Zi Z;,Z;J’i](z,zy
i= i=

As discussed next, this ATE estimator is asymptotically unbiased (consistent), but unlike the

estimators without covariates, it is biased in finite samples.

Multiple regression estimator for the FP model
To examine asymptotic moments under the FP model with fixed covariates, it simplifies the proofs
to use centered covariates 7; and X;, where X, =(x, —X,) for student I and covariate k. Thus,

weuse Z, =(1 7, X,) in (5.21) rather than Z,; this centering has no effect on the parameter estimates

(apart from the intercept) and has no effect on model fitted values or residuals. Using these centered

covariates, we assume in addition to (5.7) that as n approaches infinity:
Ny~ no ., no .,
(5.22) Zi:l XX,/ n—>Q_, zi:1 Xa /n—>Q,, Zizl X7, /n—>Q,

where @; and 7, are defined as in (5.4a); Q__ is an nxn symmetric, finite, positive definite matrix;

and Q and Q__ are finite vxlvectors of fixed real numbers. In these expressions, the covariances

between the covariates and potential outcomes can differ for treatments and controls.

The following lemma uses results in Freedman (2006) and Schochet (2010). The proof is provided
in Appendix A.
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Lemma 5.3. Let ﬁ}lclus’MR’FP be the multiple regression estimator for Bcius.rp and assume (5.7) and (5.22).

A

Then, S

s rpp 1S asymptotically normal with asymptotic mean f3,

clius. FP and asymptotic variance:

R T2 ] o2 Q! Q-l Q Ql Q-l Q
(5.23) AsyVary (Bycius am.rr) = [S—T + e S—TJ -2 X ¥ _9(1-2p)—F 2,
np n(l-p) n np(1-p) np(1-p)

The first bracketed term on the righthand side in (5.23) is the variance estimator under the FP
model without covariates, so the second and third terms represent precision gains (or losses in rare

cases) from adding covariates. Precision gains will occur if p =.5, under constant treatment effects,

or if correlations are low between X, and 7, (that is, if the outcome-covariate relationship is similar

for treatments and controls).

As discussed in Schochet (2010), a conservative variance estimator for (5.23) is as follows:

2 2 . 2
(5.24) AsﬁVarR(ﬂnclm’MR’FP):(S_T_i_ sc sy Sc)J

np n(l1-p) n
N -1 A N -1 A
_ Qxagxxgxa _ 2(1 _ 2p) thgxxgxu ,
np(1-p) np(1-p)

where the covariance matrixes are estimated using sample moments:
(525) Q,=pH,+(1-p)H¢, Q@ =H,-H, and _ =>" %% /(n-1).

In (5.25), Hy and H are vxl vectors of sample covariances between x, and y, for treatments

and controls, respectively:

B 1 np = - B 1 n(l-p) L _
HT(k)_ (n-1)p iél(xik ka)(yi yT) and Hc(k)_m i;() (X = X)) (Vi = Ye)

where the denominators could use (7 —1—V) instead of (n—1).

This estimation approach becomes cumbersome for other, more complex designs considered later
that have additional variance terms. Thus, RCT-YES instead estimates (5.24) using a variant of the

following variance estimator suggested by Imbens and Rubin (2015) based on regression residuals:

A Z(Tl _p)z (v _Bo _,Bnclus,MR,FP(Z -p) _ii?)z
5.26) AsypVi == ,
( ) Sy Cl”'R (ﬂnclus,MR,FP) n(n _ 1 _ V)[p(l _ p)]2
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where :éo» ,éndm,MR’FP, and | are parameter estimates from an OLS regression of y, on
z,=(1 f; X,). Equivalently, (5.26) can be calculated using the residuals from a regression model

that includes the non-centered variables z, = (1 7 X;). The rationale for this estimator will become

apparent from Lemma 5.4 below for the SP model.

For the calculations, RCT-YES uses a new, slightly modified version of (5.26) that includes the FP
heterogeneity term, and that ensures when v =0, the variance estimator with covariates reduces to

the variance estimator without covariates in (5.10). This estimator can be expressed as follows:

MSE, _MSE. _(J/MSE, —[MSE_)’

(5.26a) AsyVar (:Bnczus MR.FP) = , where
o np n(l-p) n
MSE, = N f (v _Bo _Bnclus wrrp(l—P)— ii?)z and
(n—v)p-14= Y

1 n(l-p)

MSE . = B 1R ERNY:
C (n—v)(1-p)—1 i;TZ::o (Vi = Bo + Brctus v rp P —X;Y)

are regression mean square errors for the treatment and control groups, respectively. For this
estimator, losses in the number of degrees of freedom due to the inclusion of covariates in the model

are split proportionately between the treatment and control groups. This estimator uses regression
. 2
mean square errors for the FP heterogeneity term rather than the (s, —=$.)" /1 term to ensure that

the variance estimators will be positive.

RCT-YES conducts hypothesis tests using ttests with (1, +n. —v—2) degrees of freedom, where V

is the number of baseline covariates.

Models with covariate-treatment interactions. The model explanatory variables can also include

X, -by- 7, interaction terms in addition to X,and 7;. Although this approach can improve precision

(as discussed below), RCT-YES does not estimate these models for several reasons. First, in social
policy RCTs, it is uncommon to find that interventions have a meaningful effect on the covariate-
outcome relationship (see, for example, Table 5 in Schochet, 2010). Second, simulation results
suggest that precision gains from including the interactions are likely to be negligible (Yang and
Tsiatis, 2001). Third, in finite samples, precision gains can be reduced further due to losses in the
number of degrees of freedom (especially for designs with small randomized samples). Finally, the
inclusion of interactions complicates the analyses for blocked designs and subgroups. Instead, for

simplicity, RCT-YES uses a much more common analytic approach where all regression specifications
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include non-interacted baseline covariates only, which will likely capture most of the precision gains

due to regression adjustment.

For completeness, however, it is instructive to examine how the inclusion of interaction terms can

improve efficiency under the Neyman-Rubin-Holland model. For this analysis, let q; signify the

centered interactions where g, = X, 7,, and redefine Z, =(1 7, X; q;) to be the model explanatory

variables. The following lemma uses results in Lin (2013), Schochet (2010), and Yang and Tsiatis
(2001); the proof is provided in Appendix A for a parallel lemma for the SP model discussed later.

Lemma 5.3a. Let B . rrp be the multiple regression estimator for [, .p for the model with

7

explanatory variables Z, = (1 f; X, q,). Assume (5.7) and (5.22) and that as n approaches infinity,
D KEM-Y)/n—>Qy and Y7 X(X(0)-T)/n—Q , where @ and Q are finite

vxl vectors of fixed real numbers. Then, ﬁ’

s ik pp. 1S asymptotically normal with asymptotic mean B, .o rp

and asymptotic variance:

(5 -00, 200, (-0, 210,) (-a.0i0,)
np n(l1-p) n .

(526b) ASyVa’”R (/’;)nclus,MR,FP,lnt) =

The consistency of the multiple regression estimator may seem surprising, but occurs due to the
centering of the variables. The first two terms on the right-hand side of (5.26b) demonstrate how
adding covariates can yield precision gains for the treatment and control groups, respectively. These
precision gains can differ if the outcome-covariate relationships differ across the research groups.
The third term shows how the interaction terms can reduce the overall variation in the subject-level
treatment effects. Intuitively, the parameter estimates on the interactions represent impact estimates
for subgroups defined by the covariates. Thus, the variation in these subgroup impacts can explain
some of the unobserved variation in the subjectlevel treatment effects. The variance in (5.26b) can

be estimated using a version of (5.26a) that includes the interaction terms.

Because the covariance terms in (5.26b) are nonnegative, regression-adjustment under the interacted
model can only yield precision gains (unlike the non-interacted model where regression-adjustment
could lead to precision losses in rare cases). Furthermore, the variance in (5.26b) is less than or equal
to the variance in (5.23) for the non-interacted model (with equality if p =.5or the outcome-
covariate covariances are the same in the treatment and control conditions). This can be seen by
QlQ . /np(1-p) where
a, =1-p)Y,(D)-Y 1)+ p(Y.(0)-Y(0)) and noting that a, —ea, = (1—2p)z,. Importantly,

expressing the sum of the three covariance terms in (5.26) as Q' .

(5.26b) reaches the efficiency bound for asymptotically linear ATE estimators (Hahn, 1998; Imbens,
2004; Newey, 1990; Yang and Tsiatis, 2001). Thus, the inclusion of the interaction terms yields
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asymptotic precision gains, but both the empirical and theoretical literature suggests that these gains

are likely to be small in practice and could be offset by degrees of freedom losses in finite samples.

Multiple regression estimator for the SP model

The asymptotic moments for the multiple regression estimator for the SP model, S, . 1 s»» can be

calculated from the FP estimator using the same conditioning arguments as for the model without

covariates.  First, using the law  of iterated expectations, we find that

A

Brtwsamse —2—>E;(Y,(1) = Y,(0)) = B, sp - Similarly, using the law of total variance in (5.12), as 7

gets large’ we have that (1) Varl (ER (Bnclus,MR,SP )) = Grzl /l’l and (2) E[ (VarR (ﬁnclus,MR,SP)) equals the

expectation of the variance expression in (5.23). The following lemma formalizes these results; the
proof is provided in Appendix A and follows Schochet (2010).

Lemma 5.4. Let S, ,..zsp be the multiple regression estimator for B, .. o =ty — ). Then,

A

B um.sp 15 asymptotically normal with asymptotic mean fB, .. p and asymptotic variance:

1 ~ ~ )
—FE . (T (y.— B, — T —X.
np2 (1 _ p)2 RI( i (yl IBO ﬁnclus,SP i XlY) )

2 2 ' -1 ' -1
— (GTI 4 O-CI ]_ AxanxAxa _ 2(1 _ 2p) Ax‘rAxxAxu ,
np  n(l=p)) np(l-p) np(1=p)

(5.27) AsyVary, (Bnclus,MR,SP) =

where X, =x, —E,(x,), and A =E (XX,), A, =E,(Xia,), and A =E,(Xi7,) are moment matrices under

the joint super-population distribution for the covariates and potential outcomes.

RCT-YES estimates the variance in (5.27) using (5.26a) from above, excluding the FP heterogeneity

term. This variance estimator is based on the squared expectation term after the first equality sign

in (5.27).

Even if RCT-YES users request regression-adjusted estimates, they should also estimate impacts using
simple differences-in-means methods; the two sets of estimates should be carefully compared and

large differences should be resolved (for example, they could indicate data problems with the

covariates). RCT-YES reports R” values from the regression models.

Models with covariate-treatment interactions. The following lemma provides the asymptotic

properties of the multiple regression estimator when the model explanatory variables include X;-by-

7, interaction terms (denoted by q,) in addition to %,and 7 (see Appendix A for the proof).
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Lemma 5.4a. Let ,3

s k5P D€ the multiple regression estimator for B, .. op = (b — ¢y ) for the model
with explanatory variables Z, =(1 T, X, q;). Then, B, ... yr.sp.m 1S asymptotically normal with asymptotic

mean 3 and asymptotic variance:

nonclus ,SP

(o, — Ay, A;;Am ) . (6}, - Ay, A;‘XAWC ) s ALALA
np n(l-p) n

)

(5.27a) AsyVary, (ﬂnclus,MR,SP,lnt) =

where Ay =E, (X;(Y,(1) = t,)) and Ay = E (X{(¥;(0) - g, )) are moment matrices.

[t is interesting that (5.27a) includes the term A’ ALA__/n pertaining to the covariances between
the subject-level treatment effects and covariates, but not the overall heterogeneity term o7, /n.

Thus, (5.26a) is not an appropriate variance estimator for the SP model with interactions. Instead,

it is more appropriate to estimate (5.27a) using a version of (5.25) adapted to the SP model.

f. Subgroup analysis

In education RCTs, researchers often estimate ATEs for baseline subgroups defined by pre-
intervention student, teacher, and school characteristics. For instance, researchers may be interested
in assessing whether intervention effects differ by gender, test score levels in the prior year, educator
experience, school size, and/or school urban/rural status. These analyses can be used to assess the
extent to which treatment effects vary across policy-relevant subpopulations. Results from subgroup
analyses can help inform decisions about how to best target specific interventions, and possibly to

suggest ways to improve the design or implementation of the tested interventions.

RCT-YES conducts subgroup analyses for categorical subgroups where each sample member is
allocated to a discrete, mutually exclusive category (for example, 1=not proficient in math in the
prior year; 2=proficient in math; and 3=highly proficient in math). Subgroups for RCT-YES cannot
be continuous variables, but users can re-define such variables (for example, prior year test scores) as
categorical subgroup variables for analysis. RCT-YES will conduct subgroup analyses only if each
specified subgroup category has a sufficient sample size to protect PII (see Chapter 3). If a subgroup

category is too small, it can be grouped with another subgroup category or omitted from the analysis.

In this section, we discuss design-based methods used in RCT-YES to estimate ATEs for baseline
subgroups, including statistical tests for assessing differences across subgroup impacts. First, we
discuss estimation methods using the FP and SP models without covariates (the simple differences-

in-means estimators) and then using regression estimators with covariates.
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Subgroup FP and SP models without baseline covariates

Using Assumption (4.2), random assignment ensures that 7, 1L (¥;(1),Y;(0)) conditional on any

covariate value defined by pre-randomization characteristics. Thus, we can use very similar design-
based methods to those for the full sample to estimate ATEs separately for each subgroup of interest.
The only difference is that the numbers of students in a subgroup who are randomized to the
treatment and control groups are now random wvariables (with a hypergeometric distribution). For

example, suppose that # =100, p =.5, and that 30 percent of students in the sample are male. In

this case, we would expect that 15 males would be randomly assigned to each research group.
However, there is a variance around this gender allocation so that the observed treatment (control)
group sample might contain fewer or greater than 15 males. We assume for subgroup analyses that

there are at least 2 treatments and 2 controls in the subgroup sample to allow for variance estimation.

We denote subgroups using the subscript “ & .” Thus, for example, 7, is the number of students in
the sample in subgroup &, n;, and 7., are respective treatment and control subgroup sample sizes,
and similarly for the other variables defined above. Let G, be a subgroup indicator variable that

equals 1 if student 1 is in subgroup € and O otherwise. We can then define the ATE parameter for

subgroup g for the FP model as follows:

g

6529 Buwssr =T D-T,0)=-1 3 (-7, (0),

g i:Gig =1

where Yg(l) and I7g(0) are mean potential outcomes for the subgroup.

Under the SP model, the potential outcomes for subgroup g are assumed to be random draws from

subgroup-specific potential outcome distributions in the super-population with finite means g,

and g, and finite variances 0_?1;; and O'élg . Thus, the ATE parameter for the SP model is

(529) ﬂnclus,g,SP = E[ (Kg (1) - Y;g (0)) = ILlT[g - ﬂCIg :

Consider the differences-in-means estimator for subgroup & for both the FP and SP models:

g g

> LY, () > (1-T)Y,(0)

~ A _ _ i:G.. =1 G, =1
(530) ﬂnclus,g,FP = /Bnclus,g,SP = (yTg _ng) =— g - g

> Y-

Gy =1 i:Gy=l1
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The denominators in this estimator are random, unlike the estimators for the full sample where the
treatment and control sample sizes are fixed. Thus, (5.30) is a ratio estimator where both the
numerator and denominator terms are random variables. As discussed below, this simple differences-
in-means estimator is unbiased and asymptotically normal.

To show that 3

nclus,g ,FP

is unbiased, we follow the approach used by Miratrix, Sekhon, and Yu (2013)

in a different context by conditioning on the observed subgroup sample sizes, n, = an T and
-Gy =

ne, = 272 L(A=T), and then averaging over all subgroup allocations (A4) to the treatment and

control groups:

(531) E g (Brogus g rr) = E4ERl( 2 T¥ /) =( 3 (A=T)¥(0)/ne) | e )
1:Ge =1 1:Ge =1
= EA[( GZ: ng(l)/ng)_( Gzliflg(o)/ng)] = ﬂnclus,g,FP'
1:Gig =1 1:Gg =

This expression holds because E(T;|n,, ne,)=(n,/n,) and E((1-T;|ngn.)=(n/n,).

Using a similar conditioning argument, we can calculate Var,,(f ) using the law of total

nclus,g,FP
variance in (5.12). As 1 approaches infinity, Var, (E,( ,ém,us’ erp) =Var, (B s o rp) = 0. Thus, if we

apply Lemma 5.1 for subgroup &€ conditional on subgroup sample sizes, we have that

) ) 1 1. S
(5.32) Var, (ﬁnclus,g,FP) =E,(Vary (ﬂnclus,g,FP ) = SYZ"gEA (n_) + Sé‘gEA (n_) - ng )

Tg Cg

where Sﬁg = Z,n&cg . Y, (H- Z, (1)*/ (17, —1) is the variance of treatment group potential outcomes

for subgroup g, and Ség and ng are defined analogously.

To estimate the unconditional variance in (5.32), an asymptotic expansion can be used to

approximate E,(1/n,,) using (1/E,(n;))=1/npg,)=1/n,p), where ¢,=(n,/n) is the
proportion of the total sample in subgroup &, and similarly for E,(1/n.) which can be
approximated using (1/E,(ng,))=(1/n,(1-p)). However, as discussed in Efron and Hinkley

(1978) and Ghosh, Reid and Fraser (2010), a more accurate variance estimator can be obtained by
conditioning on the subgroup sample sizes. The rationale for this approach is that conditioning on

the ancillary statistics n;, and ng, (that are uninformative about the ATE parameter) yields
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conditional variance estimators that are more germane to the observed data than the unconditional

variance estimator. Thus, the variance estimator for the FP model used in RCT-YES is

2 2 2
A S s St —S
(533) ASJ; VCII”R (:Bnclus g FP) — o - ( & Cg) , where
~ Mg Py ng(l—pg) n,
2 1 & = 2 2 < = \2
(5.34) s7, = e —1 Z (Vig _yTg) and S¢, P z (Vig =Veg)
Tg ~ L iGg=LT=1 Cg ~ LiG,=1,1;=0

are sample variances for subgroup g and p, =n, /n, is the observed proportion of treatments in

subgroup g . This variance estimator—which is based on actual subgroup sample sizes, not expected

ones—has the same form as the variance estimator for the full sample. RCT-YES uses the same

variance estimator for the SP model, excluding the FP heterogeneity term.

RCT-YES conducts hypothesis testing for subgroup analyses using t-tests with (n,, +n., —2) degrees

of freedom. The Benjamini and Hochberg multiple comparisons adjustments are not applied for

subgroup analyses which are typically exploratory analyses.

Testing for ATE differences across subgroups

It is good research practice to downplay significant findings for individual subgroups if there is no
statistically significant evidence of a difference in subgroup estimates (see, for example, Bloom and
Michalopoulos, 2013; Rothwell, 2005; and Schochet, 2009). For example, statistically significant
findings for English language learner (ELL) students should not be emphasized if there is no
evidence of a difference in effects between ELL and non-ELL students. The practice of examining
differences in subgroup impacts is especially important if policymakers aim to use evaluation
findings to target services to those who can most benefit from them. (It should be noted that
detecting a statistically significant difference in an effect is difficult because of the lower statistical

power of tests of differences.)

RCT-YES conducts a chi-squared test to test the null hypothesis of no differences in treatment effects

across a subgroup category with § levels (for example, s =2 for girls and boys or s =3 for three

categories of achievement test scores in the year prior to random assignment). Let A be a sx1 vector

of ATE estimates for a subgroup category with an associated estimated variance-covariance matrix
@, . Note that @, is diagonal due to the independence of the subgroup ATE estimates, which

occurs for the FP model because
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EAER [(ﬂnclus,g,FP - ﬂnclus,g,FP)(ﬂnclus,g’,FP - ﬂnclus,g’,FP) | nTg,an,nTg’,an’)]

= EAER [(ﬁnclus,g,FP B ﬁnclus,g,FP) | nTg,an ]ER [(ﬁnclus,g’,FP B ﬁnclus,g’,FP) | nTg’,an’] =0.

The same argument holds for the SP model. Using results from above, A is asymptotically normal
with mean A and variance @®, . Construct the (s —1)xs matrix R as the SX§ identity matrix where

the last column is replaced by a column of -1s and the last row is deleted. The chi-squared statistic

to test for subgroup differences can then be calculated using
(5.35) ChiSq-Subgroup = (R)A»)'(R(i)AR’)‘1 (Ri) .
This statistic is distributed as y° with (s—1) degrees of freedom.

RCT-YES displays p-values from the chi-squared tests for each subgroup category of interest, along

with ttest results for each subgroup level.

Subgroup FP and SP models with baseline covariates

One approach for including baseline covariates in the subgroup impact analysis is to estimate
separate regression models for each subgroup. RCT-YES does not adopt this approach, however,
because for small subgroups, degrees of freedom losses could reduce statistical power and collinearity
among the covariates could complicate the estimation. Instead, RCT-YES estimates a full-sample
regression model where the explanatory variables include the baseline covariates as well as subgroup-

by-treatment status interaction terms (GigY; terms).

To examine this regression approach using the Neyman-Rubin-Holland model (which to our

knowledge has not been formally addressed in the literature), we can use the relation

V= 22:1 G,y to parameterize the regression model under the Neyman-Rubin-Holland model

as follows:
(5.36) y, = ZﬂgGigf; + Z5gGig +u,
g=1 g=1

where u, = Z;l Gl +7,T] is the error term for the FP model and u, = Z;:I G,la, + ,T] is
the error term for the SP model. Note in this model that we include subgroup indicator and
interaction terms for each subgroup level and exclude the T and intercept terms. The benefit of

1

this model formulation is that g, is the subgroup ATE parameter for subgroup & (that is,

By = Brwsgrp for the FP model and B, = f, ., .o for the SP model). Furthermore, G, T is

ighi
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orthogonal to the other model explanatory variables, which simplifies the proofs for examining the

statistical properties of the ATE estimators.

We now consider the asymptotic moments of the multiple regression estimator for S, in (5.36),

where the X, covariates are included in the model with associated parameter vector Y. For ease of

presentation, we focus on the SP model; differences between results for the FP and SP models are

similar to those from above. The following new lemma is proved in Appendix A.

Lemma 5.5. Let S, = B, o sm.sp be the multiple regression estimator for B3, . oo = (Hpse — Heyp) n

(5.36), where the model includes the baseline covariates X,. Then, [Af

cius.g mr.sp 1S asymptotically normal with

asymptotic mean f3, ... . o» and asymptotic variance:

(5.37) ASyVarm(B;zclus,g,MR,SP)
B 1
nlp(1- p)qg]2
:(aﬁ,g . Ok }r BAB  2[A,B+(1-2p)A;

npq, n(l-p)q, | np(l-p)q, np(1-p)q,

w (G T2 (v — Z,BG ZéG —-%,7)%)

XTg ]

where B=ALA A, w =B (X;

xa ’

Xig)» A, =E (X;gai ), and A, =E (X XigTig ) are moment matrices under the

joint super-population distributions for the covariates and potential outcomes for subgroup g X, =x, —E,(x,),

A, =E(XX;), and A, =E,(Xia,) are defined in Lemma 5.4; and ¢, =n,/n.

One direct approach for obtaining a consistent estimator for the variance in (5.37) that we discussed

for the full sample analysis is to estimate the separate pieces B, A A, and A, using sample

xxg ’ XTg
moment matrices. However, due to the relatively large number of pieces, RCT-YES instead estimates

(5.37) using residuals from the regression model in (5.36) where the treatment status indicator is

centered using fig =T - p, instead of T:

MSE MSE

(538) AspVary(B,)=——%+ € where
Ny Pg ng(l—pg)
1 nTg p a ~ AN2
MSETg z (yig_ﬂg(l_pg)_é‘g_xig’Y) and

(n— v)pgqg Gy =1,T;=1
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1 an A a ~ A\2
(Vig + PeP, =0y =X ¥)"
(I’l —V)(l - pg )qg -1 i:Gl-g:ZI,Tl:O ¢ 8 ¢ 8

MSE,, =

In this expression, MSE;, and MSE,, are regression mean square errors for the treatment and
control groups, respectively, p, =(ng /n,), and g, =(n,/n). The degrees of freedom losses due to

the inclusion of model covariates are spread proportionally across the subgroups. RCT-YES uses the

same variance expression for the FP model, except that it subtracts off the FP heterogeneity term

(JMSE,, —|MSE, ) In, .

RCT-YES conducts hypothesis testing for the subgroup analysis with covariates using t-tests with
(g, +ne, —vq, —2) degrees of freedom. Note that the ATE estimators, Y;; . » are independent across

subgroups in large samples; thus, the chissquared tests described above for the simple differences-in-
means estimators can be used for the regression estimators to test the null hypothesis of no

differences in treatment effects across subgroups.

g. Assessing baseline equivalence

To strengthen the credibility of RCT findings, it is good research practice to demonstrate baseline
equivalence of the treatment and control groups using observable baseline data. The What Works
Clearinghouse (WW(C) often requires that RCTs demonstrate baseline equivalence for their analytic

samples in order for the studies to meet WWC design standards with or without reservations (see

the WWC Procedures and Standard Handbook, Version 3, 2014).

To assess baseline equivalence, RCT-YES conducts t-tests for each baseline covariate specified in the
BASE_EQUIV input variable. The analysis uses the full sample with non-missing data for the

considered covariate and is conducted separately for each outcome measure.

The t-tests are conducted assuming equal variances for the treatment and control groups because the
baseline covariates are measured prior to random assignment. For baseline covariate k, RCT-YES
calculates the following t-statistic for both the FP and SP models:

. 1 1 .
(5.39) ¢,=0,/ |s;(—+—), where 0, =(Xp — X))
\ Cn,ong

2 2 nT nC
s _(p=Dsp+(me—Dsg o _ 1 = \2. 2 1 - \2
S, = LSy =E— X, —X Sry =——r X, —X .
k n, + nc ) > PTk nT -1 l‘;l( ik Tk) > Ok nc —1 i:;()( ik Ck)
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The degrees of freedom for the ttests is (1, +n.—2). RCT-YES also conducts an F-test to test the

hypothesis that covariate means are jointly similar. This test accounts for potential dependencies
among the covariates and multiple testing issues. The joint test is based on the following chi-squared

statistic:
(5.40) ChiSq - BaseDiff = 3'\76'13 ,
where & is a vxl vector containing the Sk estimates and

(n, = D53 (kK (ne D2 hok) 11

np+ne—2 np N

(5.40a) V,(k,k')= ]

is the estimated variance-covariance matrix where

R _ _ R _ _
Z (X = X ) (X = Xp) and s (k, k") = Z (X = X ) (X — X)) -

ny =172 ne —1,7=

st (k, k" =

ChiSq - BaseDiff is distributed as y” with V degrees of freedom. RCT-YES uses the more familiar

Hotelling’s T-squared statistic for the joint test:
(5.406) &'V'8(n, +n. —v—1)/(n, +n, —2)v,

which is distributed as F'(v,n;, +n. —v—1). The joint test is conducted (1) using the sample without

missing values for any of the covariates and (2) only if the number of observations per covariate is

smaller than the OBS_COQOV input variable (which has a default value of 5; see Section 1j below).

h. Treatment of missing outcome data and the use of nonresponse weights

RCT-YES requires an input data file with one record per student in the randomized sample (or per
educator if the intervention targets educators and their outcomes). The input data file should
include records with missing data, although there may be instances where the data file only contains
records for those with nonmissing data. This might be the case, for example, if the administrative
records used to define the sample only contain test score data on third grade students who completed

the test, but not for test noncompleters.

By default, RCT-YES estimates ATEs for a particular outcome using only those observations that have non-
missing values for that outcome (respondents). The program does not impute outcomes, for example using
multiple imputation (Rubin, 1987; Shafer, 1997), but deletes cases with missing outcome data
(nonrespondents). We adopted this approach for RCT-YES for several reasons. First, in a large

simulation study, Puma, Olsen, Bell, and Prince (2009) found that case deletion performs reasonably
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well relative to other missing data adjustment methods for education RCTs that focus on test score
outcomes. Second, case deletion is simple to apply and understand and limits user input for running

the program.

As discussed more formally in this section, case deletion will yield unbiased ATE estimates if the
underlying factors generating the missing data are unrelated to the intervention effects. This would
occur, for example, under the Missing Completely at Random (MCAR) assumption (Rubin, 1987)

that the missing data mechanisms are random for both the treatment and control groups.

RCT-YES can also accommodate optional weights that adjust for nonresponse, for example,
constructed using propensity score methods and available baseline data (as discussed later in this
section). This approach yields unbiased ATE estimates under the Missing at Random (MAR)
assumption (Rubin, 1987) that, for each research group, missingness is random conditional on the
observed baseline covariates. Separate sets of nonresponse weights can be used for different

outcomes and subgroups.

[t is important that program users assess the credibility of the MCAR and MAR assumptions. For
instance, users should (1) examine treatment-control differences in data response rates for students,
classrooms, and schools; (2) compare the baseline characteristics of respondents in the treatment
and control groups (using the nonresponse weights if pertinent); and (3) compare the baseline
characteristics of respondents and nonrespondents in each research group to gauge the extent to
which respondents appear to be representative of the full sample of respondents and
nonrespondents. Users should also assess the robustness of the impact findings using the simple
differences-in-means and regression estimators and using standard methods for imputing missing

outcome data (see, for example, Puma et al, 2009) prior to inputting the data into RCT-YES.

Next, we discuss design-based methods using case deletion and nonresponse weighting to adjust for
missing data. Although we focus on weights to adjust for data nonresponse, similar methods can be
used for weights to adjust for unequal sampling probabilities across study participants for other

design-related reasons.

Case deletion

To examine the case deletion approach under the Neyman-Rubin-Holland model, we begin by
defining “potential” data item response indicators in the treatment and control conditions, R.(T}),

where R;(7}) =1 for those with available data and O for those with missing data. Potential outcomes,

Y(T,R(T})) can be redefined to be functions of both treatment assighments and data response

(there are four such potential outcomes), but we do not use this notation for simplicity.

To obtain unbiased ATE estimates using case deletion, we invoke the following assumptions in

addition to Assumption 4.2 in Chapter 4 that defines randomization:
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Assumptions 5.1: Ignorability of data nonresponse: (i) R(T))=R, L 7T, and (i) R, 1L
(Y,(1),Y,(0)|T, =t for t €(0,1), where 0< P(R, =1)<1.

The first assumption is that data item response is independent of treatment status. The second
assumption is that response is independent of potential outcomes (that is, response is “ignorable”).
These assumptions together imply that response is random across the treatment and control groups.
Note that Assumption 5.1(i) is not required for consistency of the ATE estimators using case
deletion, because the intervention can influence data response rates as long as response is random
within each research group. For simplicity, we adopt the more restrictive assumptions which seem

more plausible.

Using this framework, the observed outcomes for respondents can be expressed in terms of potential

outcomes as follows:
(5.41) y,=TRY,(D+(1-T)RY(0).

The simple differences-in-means estimator using the full sample of respondents and non-respondents
can then be expressed as follows:

S TRY(1) Y (1-T)RY,(0)
(5.42) (¥ —yo)=+5 -5
TR, (1-T)R

1
i=1 i=1

The denominators in (5.42) are random variables because respondents are assumed to be randomly
allocated to the treatment and control groups; thus, (5.42) is a ratio estimator. This situation is
similar to the analysis of baseline subgroups from above. Thus, we can use the same methods as for

the subgroup analysis to show that the estimator in (5.42) is unbiased by (1) conditioning on the

sample sizes of respondents, n,, and 1y, and (2) averaging over the distribution of allocations (4)

of respondents to the treatment and control groups. Using this approach for the FP model, we

find that

(5.43) E E[(Vr =)l nTR,nCR]

= (N ) 5y ) e N LB S o))<

N CR

which shows that the simple differences-in-means estimator is unbiased.
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Using a similar conditioning argument, we can calculate Var,,(y; —)-) using the law of total

variance to generate an unconditional variance similar to (5.32), which can be estimated using the

conditional variance estimator in (5.10). A similar argument holds for the SP model.

Using nonresponse weights

Weights can be used in RCT-YES to adjust for data nonresponse or other design-related factors. In
this section, we consider weighted estimators for the SP model; results for the FP model are very
similar. Although we focus on weights to adjust for data nonresponse, similar methods can be used

for weights to adjust for unequal sampling probabilities across study participants for other reasons.

RCT-YES users can construct weights for each observation and include them in the input data file.
A common method for constructing nonresponse weights is to use propensity score methods using
detailed baseline data that are (1) available for both respondents and nonrespondents and (2) highly
correlated with the outcomes (Rosenbaum and Rubin, 1983). An example of how to apply this

method is as follows: (1) estimate a logit model where a 0/1 indicator of data response is regressed

on baseline data; (2) calculate the predicted response probability (propensity score), p,, from the
fitted logit model for each person; and (3) set the nonresponse weight for each person as w, = (1/ p,)
(or as the mean of w, for those assigned to the same propensity score class based on the size of their
D, values). This approach is typically applied separately for the treatment and control groups,

because patterns of nonresponse could differ across the two research groups.

The considered SP impact parameter with weights can be defined by (1) calculating a separate ATE
parameter conditional on each value of the weight and (2) averaging these ATE parameters over the

distribution of the weights in the population (W) :

(5.44) ﬂnclus,sp = E] (Y, (1) — YZ(O)) _ EW [WEI (Y[g) _(f;()o) | w;, = W)] .

To develop ATE estimators for this SP parameter under the Neyman-Rubin-Holland model, we

define “potential” weights in the treatment and control conditions as w,(T}). Potential outcomes

can now be expressed as a function of w,/(T}), but we suppress this notation for simplicity. The

weights are also likely to be a function of baseline covariates, so conditioning on the weights is

synonymous with conditioning on specific values for the baseline characteristics.

To obtain consistent estimators of the ATE parameter in (5.44), we invoke the following simplifying

assumptions:
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Assumptions 5.2: Ignorability of nonresponse conditional on the nonresponse weights:
@A) w()=w L T, (i) R(T)=R, L T |w =w, and (iii) R, L (¥,(1),Y.(0))|w, =w,T, =t for all
weW and t € (0,1), where 0 < P(w, =w)<1 and 0< P(R, =1|w, =w) <1,

The first assumption implies that the weights are independent of treatment status, so that patterns
of missing data (propensity score coefficients) do not differ for the treatment and control groups.
The second assumption states that conditional on the weight (estimated propensity score), response
rates are the same in the treatment and control groups. The third assumption states that given the

weight, individuals are randomized to response status within each research condition.

These assumptions jointly imply that conditional on the weight, individuals are randomized
independently to both response status and treatment-control status. Because the nonresponse
weights are functions of the baseline covariates, these assumptions imply that observable baseline
covariates fully account for potential selection biases due to nonresponse. In essence, the weighting
classes can be considered to be baseline subgroups. Note that Assumptions 5.2 are more restrictive
than are necessary to establish consistency, which require only the third condition (that is, given the
weight, individuals are randomly assigned to response status within each research group, but not
necessarily across research groups). We instead invoke the more restrictive Assumptions 5.2 which

simplifies the proofs and notation.

The weighted simple-differences-in-means estimator is

Y TRwY,(1) > (1-T)RwY;(0)
(5.45) :Bnczus,SP,W =Vrw _)7CW) == 7 —X= 7 .
T.Rw, Z(l -T)Rw,
i=l1 i=1

This estimator is biased if the weights vary across the sample because the denominator terms are

random variables. Under Assumptions 5.2, however, the estimator 3, ¢», is consistent because

. ZERI [T:Rw,Y;(1)] ZER] [A-T)RwY,(0)]
(5:46)  Brotus 5o —L>* -

S ELTRw] S En[A-T)Rw]
_ EwY,lrpy _ E[wY,(0)]r(1- py) =B
EI (W,-)I’pW EI (WI)I"(I _ pW) nclus ,SP >

where p,, is the weighted treatment group sampling rate and 7 = P(R, =1) is the probability of

response.
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RCT-YES adopts a large-sample approach to calculate the variance of ,é’ndus, sp - The following lemma

is proved in Appendix A.

A

Lemma 5.6. Let

nclus SPIV = (Vrw = Yew) be the weighted simple differencesinmeans estimator in (5.45)

and

and invoke Assumptions (5.2). Then, ,8

cius.spyr 18 asymptotically normal with asymptotic mean f3

nclus ,SP

asymptotic variance:

(5.47) AsyVarR](,BAndussPW): 1 2[G%IW_i_ Oow 1,
o EI(Wi) npy n(l—pW)

where O-Yz"IW =E, (le X)) — gy )2) and UéIW =E, (Wiz (Y,(0) — py )2) .

RCT-YES uses the following variance estimator for (5.47):

) 2 2
(5.48)  ASPVar(Byps ooy ) = =Dt —— W where

Wrnpy "_Vé”(l - ﬁW) ’

Dy =(n; l(n, +n.)), wy = (Zln;:l w;/ny) and W, = (ZT;:O w;/ng) are average weights, and

Stw = [Zln;:l W (¥, = Yoy ) l(np =D] and s¢,, = [Z:;,-:o W, (¥, = Yew )’ (ne —1)] are weighted
sample variances. Note that if the weights for the treatment group sum to the full treatment group

sample size of respondents and nonrespondents and similarly for the control group, we could instead
estimate Py, using Py, = (Z; wT/ ZL X w;). However, because it is unclear how RCT-YES usets
will scale the nonresponse weights for the treatment and control groups, RCT-YES does not adopt
this approach and instead uses Py = p=(ny/(n; +n.)). RCI-YES uses the same estimation

approach for the FP model with weights as for the SP model with weights, except that it subtracts
from (5.48) the FP heterogeneity term, ((Sy,, / W, )—(Seyy / W) /1.

Similar methods can be used to incorporate nonresponse weights into the regression estimators with

covariates. For these models, let Z; =(1 T}, X;yy) be the centered model explanatory variables

where X, is a weighted version of the covariate vector X; and iW =(T.-py)=T,—p). We

assume that data item response is independent of x; conditional on the weights. The weighted

ot}

. . . n ~\-1\"" ~ Sl .
regression estimator is 3, vz sp =[(2._ RWZIZ;) Zi—l RW,Z;y,]5.2), which is consistent

171771
and asymptotically normal (which can be shown using methods very similar to those used to prove

Lemmas 5.4 and 5.6). RCT-YES estimates the asymptotic variance of Bzclus,MR,SP,W using model

7

residuals from the fitted weighted regression model:
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MSEy, , MSEg,

wpnp wen(1-p)

, where

(5.49) AspVary, (ﬂnclus,MR,SP,W) =

1 & , ; -

MSEp, = O?T)p—li; W (i = By == P)Brcncamspwr = Xiw¥)’ s
1 i _ o

MSECW - (n - V)(l - P) -1 i:;o Wiz (yi - IBO + pﬂnclus,MR,SP,W - "iw'\()2 ;

and f3,, Boctus mr.spav » and § are parameter estimates from a weighted regression of y, on Z,. The
same estimator is used for the FP model, except that the FP heterogeneity term

(JMSE,,, | w,)—(JMSE_,, /W.))’/n is subtracted from (5.49). This estimator has not been used

in the literature.

RCT-YES uses the same estimation approach for subgroup analyses with nonresponse weights. The

SP model variance estimator for the simple differences-in-means estimator for subgroup g is

2 2

. A s s
(5.50)  AsyVar(B, . g.5p) == Ty — CgIW , where
Wy Py Wang( _pg)

nTg an
2 2 - \2 2 2 - 2
Stew = z Wig(yig _yTgW) /(nTg —1) and Scow = Z Wi (yig _ngW) /(an -1).
Gy =1,T;=1 i:Gig=1,T;=0

The FP model variance estimator is identical except that the FP heterogeneity term
((Szgw ! Wiy ) = (S / v_vcg))z/ng is subtracted from (5.50). Similarly, using weighted versions of
(5.36) and Lemma 5.5, RCT-YES uses the following SP model variance estimator for weighted

regression estimators for subgroup models with baseline covariates (and similarly for the FP model

where the FP heterogeneity term is subtracted from the SP variance estimator):

. MSE MSE
(551) AsyVar(ﬂnclus,g,MR,SP,W) = —2 B —2 .
WTgngpg Wang(l_pg)

, where

1 & A oA
MSE.. .. = 2 (v —(1— 5 -3 2
B (n- V)Peq, —1 i:Gigzl;I}:l Wie Ui == PPy =0 ~Xign¥)
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1 & A & o o«
MSE,.,, = W (Vig + PBe — 0 —Kiqwl)?
CeW (I’l _V)(l - pg)qg -1 i:Gigzzl,:]}:() g o8 ¢ eW

pg =(ng, /ng),and q, =(n,/n).

Finally, for the baseline equivalency analysis with weights, RCT-YES calculates the following weighted
t-statistic for both the SP and FP models:

(5.52) tkW—5kW/ /SkW(—-I— 1 —), where
nr ne

Oy = X —Xcuw ) » Xmpe and Xy, are weighted means,

(ny —1)(82 | W2) + (1 =1) (52,5 /| W2) 1
Sz _\Ur Tiw ' T C CkW C ’ S%kW (nT_l)lzw(xlk xTWk) . and

e np+n,—2

S¢ L iwz(x X )

CkWw — i \Nig — rewk) -
(ne 1) iT;=0 o

Note that to calculate the pooled variance, the treatment and control variances are weighted by their
sample sizes rather than the sum of their weights because it is unclear how RCT-YES users will scale

the weights for each research group.

To test hypotheses that covariate means are jointly similar, RCT-YES uses a weighted version of

A

(5.40b) using the vector 8, containing the 0, estimates and the following variance-covariance

matrix:

DIszy (k. k') 1 W71+ (e _1)[SéW(k’k,)/Wé][L+L] where
ne+n.—2 np o ne

\A]aW(kak,) — (nT

N i,
st (k. k') = Z ( Xik xTWk)( ik' xTWk') and

( l)lT =]

2 i 1 & 2 Y

sew (k) = ——— " W2 (0 = X )X = Xepper) -
(nc 1) iT= =0
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I. Treatment of missing covariate and subgroup data

Missing covariate data. For RCTs, the use of regression models that control for baseline covariates
can improve the precision of the ATE estimates. However, these covariates are not required for
impact estimation, because simple differences-in-means methods produce unbiased (or consistent)
ATE estimates. Thus, RCT-YES includes in the analysis individuals with valid outcome data but

missing covariate data.

Users can impute missing covariates themselves and input them into RCT-YES. If not, RCT-YES uses

the following approach to adjust for missing covariates depending on the prevalence of missing data:

o The covariate is missing for 30 percent or fewer cases for both the treatment and control
groups. In this case, the program imputes missing covariate values using covariate means for
the sample with non-missing covariate values—separately for the treatment and control
groups—and separately for specified blocks and clusters.? The imputations are also conducted
separately for each specified outcome measure (which may have different percentages and

patterns of missing data). If pertinent, nonresponse weights are used for the imputations.

o  The covariate is missing for more than 30 percent of cases for either research group. In

this case, the covariate is dropped from the analysis.

The 30 percent missing data cutoff rule is consistent with results from the data nonresponse analysis
conducted by [ES’s What Works Clearinghouse (WWC) for assessing acceptable levels of biases in
the impact estimates due to missing outcome data. The 30 percent cutoff can be changed using the
MISSING_COV program option (see Table 2).

We did not adopt an alternative strategy of including missing covariate dummy variables in the
models and setting the missing covariates to a constant, because Jones (1996) showed that this
approach can yield biased estimates (even under MCAR) if the covariates and treatment status have
some correlation. Furthermore, this approach would reduce the number of degrees of freedom for
hypothesis testing which could reduce precision (especially for clustered designs with small numbers
of clusters). Nonetheless, if desired, RCT-YES users can include missing covariate dummies in their

list of covariates and replace the missing covariates with a constant prior to running the program.

Missing subgroup data. For subgroup analyses, RCT-YES excludes cases that have missing values for
the subgroup variables. For example, if gender is missing for an individual, RCT-YES will exclude
this observation from the analysis when estimating impacts for boys and girls (even if that

observation has available outcome data).

3 For Design 2, a missing covariate is imputed using the treatment or control group block-level mean if the covariate is missing for 30

percent or fewer cases for both research groups in the block; otherwise the full sample treatment or control group mean is used.
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J. Identification of problem covariates

RCT-YES conducts three types of analyses to identify potential data problems with covariates for the
regression analyses. First, the program examines whether the ratio of the number of observations to
the number of covariates is small, which can lead to model over-fitting. By default, RCT-YES uses the
rule that there must be at least 5 observations per covariate for non-clustered designs and 5 clusters
per covariate for clustered designs or the regression analysis is not performed. Thus, for example, in
a clustered design, if the sample contains data on 20 schools (10 treatment and 10 control schools),
the model can contain a maximum of 4 covariates in addition to the treatment status indicator and
intercept terms. If the user specifies 6 covariates, the program will not estimate the regression models,
but will alert the user to the problem. The cutoff rule of 5 can be changed using the OBS_COV
option (see Table 2). RCT-YES checks these conditions for each outcome. The program uses the
same cutoff rule for the baseline equivalency analysis to test the hypothesis that covariate means are

jointly similar across the treatment and control groups.

Second, the program examines whether there are large correlations among the covariates. RCT-YES

estimates regression models regardless of covariate collinearity by using generalized inverses to invert

. n .
matrixes such as ZHX;Xi to calculate the estimators. Nonetheless, the program calculates and

2 . . . 2
reports R, values from regressions of each covariate k on the other (k-1) covariates. If R, values

are large (for example, greater than .90), users might want to exclude the “duplicate” covariates from

the analysis to avoid needless losses in the degrees of freedom.

Finally, RCT-YES calculates and prints out bivariate correlations between each outcome measure and
each baseline covariate so that users can identify covariates with good predictive power. If the
correlation between the outcome and a covariate is 1 or -1 (for example, because the outcome was

mistakenly included as a covariate), RCT-YES excludes that covariate from the regression analysis.

k. Effect size calculations

RCT-YES reports estimated impacts in both nominal units and effect size (standard deviation) units.
[t is becoming increasingly popular in educational research to standardize estimated impacts into
effect size units to facilitate the comparison of impact findings across outcomes that are measured
on different scales (Hedges, 1981, 2007). This approach has been widely used in meta-analyses to
contrast and collate impact findings across a broad range of disciplines (Cohen, 1988; Lipsey and
Wilson, 1993). Analyzing outcomes on a common scale also makes it possible to combine results
across different grades and states within a particular study. The use of effect sizes is especially
important for helping to understand impact findings on outcomes that are difficult to interpret
when measured in nominal units (for example, impacts on behavioral scales or test scores). In
addition, it has become standard practice in education evaluations to conduct power analyses using

primary outcomes that are measured in effect size units.
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RCT-YES users will need to appropriately scale their outcome measures prior to analysis to fit their
particular contexts. For example, for evaluations that are being conducted across grades or states that
use different achievement tests, outcome data can be converted to zscores separately for each grade
and state by standardizing the measures using statewide means and standard deviations (the

preferred method) or using sample means and standard deviations (see Mays et al., 2009).

Regardless of how the data are scaled, by default, RCT-YES calculates impacts in effect size units for
each outcome by dividing the estimated impacts in nominal units by the sample standard deviation

of the outcome measure across control students (the status quo condition). Mathematically, for Design

1, RCT-YES calculates effect size impacts using :Bnclus,FP,ES :(ﬂnclus,FP/ Oc), where O is the

sample standard deviation for control group students (which, if germane, is calculated using
weights).* If desired, users can instead use the STD_OUTCOME option to input standard
deviations for each outcome (for example, the value in the entire state or as reported by the test

publisher from a norming sample).

Importantly, for subgroup analyses, RCT-YES uses the same standard deviation as for the full sample
to facilitate comparisons of impact findings across subgroups. The same approach is used for
clustered and blocked designs (Designs 2, 3, and 4). For clustered designs where the input data are
cluster-level averages (CLUSTER_DATA=0), RCT-YES will conduct the effect size calculations only
if the STD_OUTCOME across control group students is specified.

For baseline equivalency analyses, RCT-YES uses the pooled standard deviation across both treatment
and control group students to calculate effect sizes. We adopt this approach because the treatment

and control variances of the baseline variables should be equal due to randomization.

Importantly, consumers of RCT findings must use a broader set of criteria than the magnitude of
the estimated effect sizes to gauge whether evaluation findings are meaningful and relevant for
policy. Hill et al. (2008) and Lipsey et al. (2012) provide a framework for interpreting ATEs for
education evaluations that could also be applied to RCTs in other social policy fields. For instance,
in the educational context, they suggest that researchers examine study findings in terms of the
natural growth in student achievement in a school year, policy-relevant performance gaps across
student subgroups or schools, and observed effect sizes from previous similar evaluations. One could
also adopt a benefit-cost standard to examine whether an intervention yields benefits in dollar terms

(for example, higher future income) that exceeds intervention costs.

4 In the variance calculations, RCT.-YES ignores the estimation error in OA'C‘ As discussed in Schochet and Chiang (2011), the

incorporation of these variance components has very small effects on the overall variances in empirical applications.
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I. The CACE parameter

The ATE estimator provides information on treatment effects for those in the study population who
were offered intervention services. The treatment group sample used to estimate this parameter,
however, might include not only students who received services but also those who did not.
Similarly, the control group sample may include crossovers who received embargoed intervention
services. In these cases, the ATE estimates may understate intervention effects for those who were
eligible for and actually received services (assuming that the intervention improves outcomes). Thus,
it is often of policy interest to estimate the causal average complier effect (CACE) parameter that
pertains to compliers—those who would receive intervention services as a treatment but not as a

control (see, for example, Angrist, Imbens, and Rubin, 1996; Bloom, 1984; Heckman, Smith, and
Taber, 1998; and Schochet and Chiang, 2011).

[f data are available on the take-up of intervention services by treatment and control group members,
RCT-YES users can obtain estimates of the CACE parameter by inputting names of up to two binary
service receipt variables using the GOT_TREAT input variable. RCT-YES conducts the ATE and
CACE analyses using only observations with nonmissing data for both the service receipt and

outcome variables (to ensure that the two sets of analyses are comparable).

[t is important to recognize that if treatment group noncompliers existed in the evaluation sites, they
are likely to exist if the intervention were implemented more broadly. Thus, the ATE parameter
pertains to realworld treatment effects. The CACE parameter, however, is important for
understanding the “pure” effects of the intervention for those who received a meaningful dose of
intervention services, especially for efficacy studies that aim to assess whether the studied
intervention can work. Decision makers may also be interested in the CACE parameter if they
believe that intervention implementation could be improved in their sites. Furthermore, the CACE
parameter can be critical for drawing policy lessons from ATE effects; for instance, the CACE
parameter can distinguish whether a small ATE effect is due to low rates of compliance or due to

small treatment effects among compliers.

In this section, we consider identification and estimation of the CACE parameter for the SP model;
results for the FP model are very similar. Because the literature has conceptualized compliance
decisions as dichotomous (Angrist et al. 1996), we model the receipt of services as a binary decision.

Note that values for 7; are not affected by compliance decisions.
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Identification

In what follows, we introduce new notation. Let D, = D.(T)) denote an indicator variable that

equals 1 if student i would receive intervention services if assigned to a given treatment condition

(I'=0 or T, =1), and let Y,(T,D,) denote the individual’s potential outcome for a given value of

(T, D,); there are four such potential outcomes.

To examine identification of the CACE parameter, we classify individuals in the super-population
into four mutually exclusive compliance categories: compliers, never-takers, always-takers, and defiers
(Angrist et al. 1996). Compliers (CL) are those who would receive intervention services if and only if

they were assigned to the treatment group [ D,(1) =1 and D,(0) =0]. Nevertakers (N) are those who
would never receive treatment services [ D,(1)=0 and D,(0)=0], and always-takers (A) are those
who would always receive treatment services [ D,(1) =1 and D,(0) =1]. Finally, defiers (D) are those
who would receive treatment services only in the control condition [D,(1)=0 and D,(0)=1].

Outcome data are assumed to be available for all sample members.

The CACE parameter for the SP parameter is B, oo, = E;(¥;(1,1)=Y;(0,0)). To examine the
assumptions required to identify this parameter, we express the ATE parameter, IBnclus,SP’ as a

weighted average of the ATE parameters for each of the four unobserved compliance groups:

(553) ﬂnclus,SP = pCLﬂnclus,SP,CL + pNﬂnclus,SP,N + pAﬂnclus,SP,A + pDﬂnclus,SP,D )

where p, is the fraction of the study population in compliance group ¢ (z; p.=1)and B, . s
is the associated ATE impact parameter where S, .. oy =E,(Y(1,0)-Y(0,0)),
ﬂnclus,SP,A = EI (Yz(lﬁ 1) - YZ(O, 1)) ’ ﬂnclus,SP,D = EI (Y:(l’ 0) - Y;(O’ 1)) ’ and ﬁnclus,SP,CL was deﬁned above.

Following Angrist et al. (1996), the CACE parameter, f

n

asspcLr can be identified under the

following three key assumptions:

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA): Potential compliance

decisions D,(T)) and potential outcomes Y,(7,D,) are unrelated to the treatment status of other

individuals, and Y(7;,D,) is unrelated to the service receipt status of other individuals.

This version of SUTVA (which generalizes the simpler version in Chapter 4, Section f) allows us to

express Y,(T},D,) in terms of T, and D, rather than the vector of treatment and service receipt

statuses of all individuals.
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Assumption 2. Monotonicity: D.(1) 2 D,(0) .

Monotonicity means that D, values are at least as large in the treatment than control condition, and
implies that there are no defiers (that is, p,=0). Under this assumption,
P =P(D,(1)=1)—P(D,(0)=1), which is the difference between service receipt rates in the

treatment and control conditions.
Assumption 3. Exclusion Restriction: Y,(1,r)=Y,(0,7) for r=0,1.

The exclusion restriction means that the outcome for an individual that receives services would be
the same in the treatment or control condition, and similarly for an individual who does not receive

services. Stated differently, this restriction implies that any effect of 7, on outcomes must occur only
through an effect of 7, on service receipt. This restriction implies that impacts on always-takers and

never-takers are zero, thatis, £, sp v = Boews.sp.a =0-

Assumption 4. Presence of compliers: p, >0.

Using Assumptions 1 to 3, the final three terms on the right-hand-side of (5.53) cancel. Thus, the

following CACE parameter can be identified from the data (assuming the presence of compliers):

(554) ﬂm’lus,SP,CL = E[ (Yl (1’ 1) - Y:(O’ 0)) = [ﬂnclus,SP /pCL] *

Impact and variation estimation

A consistent estimator for [

weis.sp.cr 1N (5.54) can be obtained by dividing consistent estimators for

ﬂnclus,SP and pCL :

(5.55) ﬁCACE = ﬂnclus,SP,CL = ﬂnclus,SP / pcr

Because of monotonicity, po =P(D,(1)=1)-P(D,(0)=1). Thus, estimators for p, can be

obtained by noting that this parameter represents an impact on the rate of service receipt. Thus,

estimation methods similar to those discussed above for

n

ous.sp Can be used to estimate pg, . For
. . . . . ~ - > -5 n

example, the simple differences-in-means estimator is p., =(d, —d.), where d, = Z;Ti:l d/n,,

N2 n . . . . . . .

d.= Zl; ,d;/nc, and d; is an observed service receipt status indicator variable that equals 1 if

student 7 received intervention services, and zero otherwise. Similarly, p., can be estimated using

regression models that include baseline covariates. RCT-YES estimates p,, using the same methods
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that program users specify for estimating S, ., including the same baseline covariates for

regression analyses.

The CACE estimator in (5.55) is an instrumental variables (IV) estimator where service receipt status

(d,) is used as an instrument for 7, in the ATE regression model (Angrist et al., 1996). It is also a

ratio estimator, where both the numerator and denominator are measured with error (see Heckman
et al., 1994; Little et al., 2008; and Schochet and Chiang, 2011). Accordingly, both sources of error

should be taken into account in the variance calculations.

A variance estimator for ., can be obtained using an asymptotic Taylor series expansion of S,

around the true value B, (see Schochet and Chiang, 2011):

(556) (ﬁCACE _ ,BCACE ) ~ (ﬁnclus,SPp_ ﬂnclus,SP) _ ﬂnclus,SP (p}ZCL - pCL) .
CL CL

Taking squared expectations on both sides of (5.56) and inserting estimators for unknown

parameters yields the following variance estimator for B, :

. AspVar, (B 3% AshVe D 28.  AspCov. (B , D

(5.57) Asj/VarR, (:BCACE) _ 3 If\lz(ﬁnclus,SP) n ﬁc,ch SyA zarRI (pCL) _ ﬂCACE 3 Ak;f(ﬂnclus,SP pCL) )

pCL pCL pCL

The first term in (5.57) is the variance of the CACE estimator assuming that estimated service receipt

rates are measured without error. The second and third terms are therefore correction terms. The

second term accounts for the estimation error in p., and the third term accounts for the covariance

between IBncluS,SP and pCL ‘

Asymptotic variance estimators in (5.57) can be obtained using the variance estimators presented

earlier in this chapter for both the SP and FP models. A consistent estimator for

AsyCovy, ( ﬂAndus) s> D) is a follows (using the general form with nonresponse weights):

2 2
R s S
(5.58)  AsyCovy, (anclus,SP’ﬁCL) = _Tz’yd = - , where
wynp - Wen(1-p)

1 ! 1 .
2 = > W (y. -9 )Nd —d) and s>, = w (v, —p)d —d). In
T,yd (I’Z—V)p—ll;1 z(yz yz)( i z) C,yd (n_v)(l_p)_ll;() l(yl yz)( i z)

this expression, ¥, and d, are either variable means for the simple differences-in-means estimator

or predicted values from fitted regression models with baseline covariates (where the same covariates

are used for the service receipt and outcome variable regressions).
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Because f3,,. and P, are asymptotically normal, S, is also asymptotically normal. Thus,

RCT-YES conducts hypothesis testing using the same approach as for the ATE estimators, including
the same degrees of freedom. A similar approach for estimating the CACE parameter is used for the

FP model and for subgroup analyses.

Finally, in presenting impact findings for the CACE parameter, RCT-YES calculates (1) the control

group mean for compliers; (2) the CACE impact estimate, ,BC 4o 3 and (3) the treatment group mean

for compliers calculated as the sum of the control group mean for compliers and S, - The control
group mean for compliers (g, ,) can be estimated using Assumptions 1 to 4 above as follows (see

also Angrist et al., 1996):
(5.59) ,[‘C,CL = ()_’C,Ns - _p*))_’T,NS)/p*a

where 3, cand . ,,are mean outcomes for treatment and control group members who did not

receive intervention services; p*=(d, —d.)/(1-d.); and d, and d_.are intervention service

receipt rates for the treatment and control groups.

To see how to derive (5.59), we first note that

(5.60) Hens = p—Nﬂc,N +Lﬂc,a’
Pyt P Pyt P

which defines the relation that the population mean for those who would not receive intervention
services in the control condition is a weighted average of the control group means for never-takers
and compliers. Note next that because of monotonicity and the exclusion restriction, we have that

Hen = My y = Hy ys - Equation (5.59) then follows by inserting into Equation (5.60) the estimators

A

ﬁCL = dT _dca DPn zl_dr ’ /[‘C,Ns = J7€,NS ,and /[lT,NS = )_’T,NS .

m. Reporting

RCT-YES reports study findings in formatted .html tables and produces optional associated .csv data
files. As discussed in detail in the RCT-YES User’s Manual (Schochet, 2016), RCT-YES first reports
summary statistics on the specified outcomes, covariates, and subgroups before presenting the

impact findings. The program outputs the following information:

e Summary statistics on each specified outcome measure, separately for treatments and
controls. The output includes sample sizes, missing data rates, and variable distributions
(means, standard deviations, and 5th, 25th, 50th, 75th, and 95th percentiles) so that users
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can assess data quality and the presence of outliers. Summary statistics are also presented for

the service receipt variables for the CACE analysis (if specified) and weights.

Sample sizes and missing data rates for each requested subgroup. This information is

presented separately by outcome measure and treatment-control status.

Information on the baseline covariates for the optional regression analysis. The output
contains three types of information. First, it indicates reasons that a covariate is excluded
from the analysis (for example, because it has too many missing values). Second, the output
indicates if a covariate is highly collinear with the others, in which case the user might
consider omitting the covariate from the analysis to avoid needless losses in the degrees of
freedom for hypothesis testing. Finally, the output displays bivariate correlations between
the covariates and outcomes to help users identify covariates that can most improve the

precision of the impact estimates

Results from the baseline equivalency analysis (if requested). For each baseline measure,
RCT-YES displays treatment and control group means, the difference between the two
means, the difference in effect size units, the standard error of the difference, and the p-value
of the difference with an attached symbol **’ indicating statistical significance at the 5 percent
level (the default) or at another specified level. The p-value for the test that covariate means

are jointly similar is shown in the header row for each outcome.

Results from the impact analysis for each requested outcome and subgroup. The results
are reported using a similar format as for the baseline equivalency analysis. To report
regression-adjusted impact estimates, RCT-YES presents the unadjusted control group mean and
the adjusted treatment group mean calculated as the sum of the unadjusted control group mean
and the regression-adjusted impact estimate. For full sample analyses, the output indicates
that an impact estimate remains statistically significant after applying the BH correction

*

using the symbol “V after the “*” symbol attached to the p-value. For subgroup analyses, the
output presents impact findings for each subgroup, and presents the p-value for assessing
impact differences across subgroups in the header row for each subgroup. Separate tables are

produced for findings from the CACE analysis (if specified).
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6. Deslign 2: The non-clustered, blocked design

This chapter discusses design-based methods for Design 2 where students are randomly assigned to
a treatment or control group within blocks (strata). A common example of a blocked design is a
multi-district RCT where randomization is conducted separately within school districts. Blocked
designs also include longitudinal designs with multiple cohorts (for example, ninth graders in two
consecutive years) where random assignment is conducted separately by cohort. Blocked designs also
include two types of designs that are often used in education research: (1) matched paired designs
where similar units are paired and random assignment is then conducted within each pair, and (2)
designs where random assignment is conducted separately within demographic subgroups (for

example, for girls and boys) to ensure treatment-control group balance for each subgroup.

Blocked designs are common in education research. An example of a non-clustered, blocked design
is the Evaluation of Charter School Impacts (Gleason, Clark, Tuttle, and Dwoyer, 2010) where the
outcomes of students who applied and were admitted to charter schools through randomized
admissions lotteries (lottery winners) were compared with the outcomes of lottery losers in each of
36 school districts across 15 states. Blocking can improve the precision of the ATE estimators if the
blocking is based on characteristics associated with the potential outcomes of interest. Blocking can

also improve the generalizability of study findings because a “mini-experiment” is replicated across

different blocks.

For blocked designs, the input data file in RCT-YES must contain a variable that indicates the block
for each student; otherwise the program will not perform the analysis. The true identities of the
blocks can be masked. The name of the blocking variable must be specified using the BLOCK_ID
input variable. If the design involves pairwise matching, the input variable MATCHED_PAIR
should be set to 1 (see Table 2).

RCT-YES uses the following rules for including blocks for the full sample and subgroup analyses:

o For the FP models, blocks are included in the analysis only if (1) they contain at least 2
treatment and 2 control students with available outcomes and (2) the outcomes vary across

students in the block for at least one research group.

e For the SP models and the FP models with the BLOCK_FE=1 option, blocks are included

if they contain at least 1 treatment and 1 control student with available outcome data.

Differences between the ATE estimators for the FP and SP models are more pronounced for blocked
designs than for non-blocked designs. Thus, in what follows, we first discuss simple differences-in-
means and regression-adjusted estimators for the FP models, and then discuss these estimators for
the SP model and designs with pairwise matching. If the data contain a large number of blocks, RCT-
YES will invoke the default SP model. The discussion focuses on ATE estimators and their standard
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errors; additional methodological topics discussed in detail in Chapter 5 are discussed only if they

differ from those presented earlier.

For the analysis, we use similar notation as in Chapter 5 with the addition of the subscript “b” to

indicate blocks. Thus, for example, 7, is the number of students in block b, Y, (1) and Y, (0) are
potential outcomes for student 7 in block b, p, is the block-specific treatment group sampling rate,
T, is the treatment status indicator variable, and so on. We assume that there are h blocks in the

sample and define S, to be a block indicator variable that equals 1 if student 7 is in block b and 0

for students in other blocks.

a. FP model without baseline covariates

In this section, we discuss simple differences-in-means estimators for the FP model, first for the full

sample analysis and then for the subgroup analysis.

Full sample analysis

For the non-clustered, blocked design, the ATE parameter for block b is

6.1) Boorsp =T (D-T,0)=1 3 (1,(1)-,,(0)),

My i5,=1

where ¥, (1) and ¥,(0) are mean potential outcomes (that are assumed to be fixed for the study).

The ATE parameter across all blocks can then be expressed as

h
; Wbﬁnclus,b,FP
(62) ﬂnclus,blocked,FP == h ’

b=1

which is a weighted average of block-specific ATEs with weights w; . The default weights in RCT-YES
are W, =n,, so that blocks are weighted by their student sample sizes. Stated differently, each
student is given equal weight in the analysis (that is, w, =1). If weights are sites, another weighting
scheme is to weight each block equally (w, =1;w, =(1/n,)). This approach yields the ATE

parameter for a student in the average site in the study rather than for the average student in the
study. This approach might be desirable in evaluations where the site size distribution is highly
skewed, so that very large sites do not have an undue influence on the pooled impact estimates. This

approach can be performed in RCT-YES by including a weight in the input data file that is set to
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w, =(1/n,) for each student. RCT-YES allows users to specify different weighting variables for

each outcome.

In a blocked design, random assignment is conducted separately within each block, where sampling
rates to the treatment group, p,, could differ across blocks. Thus, the ATE estimators for the FP

model discussed in Chapter 5 apply to each block separately (see also Imbens and Rubin, 2015).

Accordingly, an unbiased simple differences-in-means estimator for the ATE parameter in block b

is Bussrr =V — V), and an unbiased estimator for the pooled ATE parameter in (6.2) is

h R h
) 1; Wbﬂnclus,b,FP bZ;, w,(Vp, = Ven)
(6 . 3) ﬂnclus,blocked,FP = h = h ‘

Because the samples across blocks are independent, the variance of the blocked ATE estimator is

h ~
A Z Wg VarR (ﬂnclus,b,FP)
(64) VCII”R (ﬁnclus,blocked,FP) ==l A 5
(Z W)
b=l1

)

and an upper bound estimator for Var,(f,... 5 rp) is

. A sz S¢ (Spp—Scp)”
(65) Var (ﬂm ” ) —__"Tb + Cb _\"Th Ch ’
R lus,b,FP nbpb nb (1 _ pb) n,

2 2 By . Q2 . .
where s;, and s, are blockspecific sample variances. Furthermore, B, . sockea.rp 1 asymptotically

normal as the number of students per block goes to infinity because it is a weighted sum of

independent, asymptotically normal random variables. Thus, t-tests for the pooled estimator can be

used for hypothesis testing with (ZZ:I (ny, +ne)—2h) degrees of freedom (for block-specific
estimates, the degrees of freedom for ttests is (1, + 71, —2)).

The simple differences-in-means estimator can also be obtained using a regression framework for the

Neyman-Rubin-Holland model. This can be done by specifying a regression model for each block

using (5.4) from Chapter 5 and then aggregating these models using the relation y, = ZZ:I SV s

where §, is a block indicator variable. This yields the following pooled regression model:
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h o
(6.6) y = zﬂnclus,b,FPSib];’b + Z OySyy +;,
= =

~ h ~
where T, = (T, — p,) are centered treatment status indicators and u, = Zb:I S,la, +7.T,] is the

pooled error term based on (5.4a). Note that we include terms for all / sites in the model and

exclude the intercept term.

The OLS estimator for the ATE parameter in block b is ﬁ

nelus,b,FP — (V1 = V) 5 this estimator is

unbiased and asymptotically normal and its variance can be estimated using (6.5). The proof of this
result is similar to the proof for Lemma 5.5 for the subgroup analysis and is not repeated here; the
main difference between the proofs is that student sample sizes are fixed for the blocked analysis but

are random for the subgroup analysis. The pooled ATE estimator can then be obtained using (6.4).

To help interpret results from a blocked RCT design, it is often helpful to examine the variation in
estimated treatment effects across blocks. For instance, study findings could have different policy
implications if the impact estimates are consistent across blocks than if they vary considerably across

blocks. Furthermore, examining block-specific impact estimates provides information on the extent

to which different choices for the weights, w,, can lead to differences in the pooled findings.

RCT-YES does not report ATE estimates for each block due to data disclosure concerns that could
arise for small blocks. Instead, the program reports summary statistics on the block-specific impact
estimates (for example, the range and standard deviation). The program also conducts a joint chi-
squared test to assess whether differences between the estimated block impacts are statistically
significant using an identical chi-squared statistic as in (5.35) for assessing differences between the

subgroup impact estimates. In the present context, the program calculates the chi-squared statistic
(RL)'(R®, R) ' (RL), where ) is a Ax] vector of block-specific ATE estimates; @, is the associated
estimated variance-covariance matrix, which is diagonal due to the independence of the block-

specific estimates; and the (4—1)x# matrix R is identical to the corresponding matrix in (5.35).

The chisquared statistic is distributed as y* with (h—1) degrees of freedom.

Finally, a common regression approach for blocked designs is to include as explanatory variables the

treatment status indicator variable (7}, ) and the block indicators (.S, ) but not the treatment-by-block

interaction terms. It is useful to parameterize this model as follows:
h h
6.7) yi=(T; _ZSibe)+z5bSib T€,
b=1 b=1
where e, is the error term. The OLS estimator for the impact parameter @, in (6.7) is

74



6. Design 2: Non-clustered, blocked

%

h h
ZZ(Zb — D)V anpb(l_pb)(yTb —Vey)
(68) 0"{1 — b=l i=l — b=l )

"y

Z (T _pb)2 ;nbpb(l_pb)

h
b=l i=l

In general, this estimator is biased for the FP ATE parameter because it is a weighted average of

block-specific impacts with weights n,p,(1-p,). It is informative to express these weights as
((1/ny)+(1/ng)) ", which can be interpreted as the inverse of block-specific variances of the simple

differences-in-means estimators, (¥, =V, ), where the variances of the outcome measures are

assumed to be the same in each block (which is the typical assumption in OLS models). Thus, the

use of these weights is a form of precision weighting.

Using results from the regression analysis in Chapter 5 and Imbens and Rubin (Chapter 9, Theorem
1), this estimator can be shown to be asymptotically normal with an asymptotic variance that can be

estimated as follows:

p

h n
1 Z (T;'b_pb)z(yib_dl(zb_pb)_gb)z
(6.9) AsyVvar,(a,)= i D) bl y )
n(n—h-
[Zpb(l_pb)qb]z
b=1

where g, =(n, /n) is the proportion of the total sample that is in block b. For this estimator, the

degrees of freedom for hypothesis testing is (ZZZI (ny, +ng,)—h—1). RCT-YES does not include the

FP heterogeneity term in this expression.

This estimation approach can be specified in RCT-YES using the BLOCK_FE=1 specification. The
approach seems more appropriate for estimating a SP population ATE parameter to help maximize
precision of the estimates than a FP population parameter that is concerned with treatment effects
for the average student (or block) in the sample. Nonetheless, it has the advantage that it only
requires 1 treatment and 1 control group member per block for variance estimation, and could be a
parsimonious specification for designs with small blocks. Furthermore, degrees of freedom losses are
smaller. For this specification, RCT-YES does not provide information on block-level impact

estimates, because only the pooled impact estimate is calculated.
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6. Design 2: Non-clustered, blocked

Subgroup analysis

The same methods discussed above for estimating impacts for the full sample can be used to estimate
impacts for baseline subgroups under the blocked design. If we denote subgroups using the subscript

“ 27 the simple differences-in-mean ATE estimator for a subgroup is

ay
ﬂ‘

h
Z gbFnclus,g,b,FP Z b(yTgb ngb)
(6 10) ﬂnclus ,g,blocked, FP = h h )

The asymptotic variance estimator of this ATE estimator is

h
Z ASy VarR (ﬂnclm,g b FP)
(6 1 1) ASy VarR (ﬂnclus,g,blocked FP) b=l , where

(Z We,)?

2

2
h N s S, =S8

(6.11a) Asj/VarR(ﬂndus,g,bFP): Teb 1 Cgb _( Tgh Cgb)
", Pop ob m( _pgb)ng 1,4 g,

)

S?gb and Ség,, are block-specific sample variances for subgroup &, p,, =(n,,/n,), and
o = (g, /n,) . Note that the default block-level weights for the subgroup analysis (w,,) can differ
from the default weights for the full sample analysis (W, ) if some subgroups (for example, English

language learners) are concentrated in some sites. RCT-YES allows users to specify different weights

for each subgroup analysis.

Hypothesis testing for the pooled estimator can be conducted using ttests with

(ZZ=1 (Mygy +Negy) —2h) degrees of freedom. Tests of subgroup differences in impacts can be

S

conducted using the chisquared statistic in (5.35), where the variance-covariance matrix, @, , is

calculated using (6.11).

If the BLOCK_FE=1 option is used, RCT-YES estimates the following regression model using OLS:

s - h
(612) yi:ZﬂgGigT;g-i_zzé‘ ngSzb_I_T]i»
g=1

b=1 g=1
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. h
where T, = (T _Zb=l SipPga)s Py is the observed subgroup sampling rate to the treatment group,

and 7, is the error term. This model controls for main block effects (S;,) but excludes block-related

interaction terms. In this specification, the ATE parameter for subgroup g s

Be = Bets. piocked s - RCT-YES applies the following new asymptotic variance estimator for 3, :

h o Tgb ~ N

| ;'G 1(7—;'[7_pgb)z(yigb_ﬁg(]:'b_pgb)_é‘gb)z
=1i:Gig=

n,(n,—h-1)

M

(6.13)  AspVary(B,) = .
[bz;pgb(l—pgb)q;]z

*
where 7, is the subgroup sample size, Poy = (nTgb /ngb), and ¢, = (ngb /ng) . For this estimator,

the degrees of freedom for hypothesis testing is (Z:zl(nTgb+ncgb)—h—l). Tests of subgroup

differences in impacts can be conducted using the chi-squared statistic in (5.35), where the diagonals

of the variance-covariance matrix are calculated using (6.13).

Using nonresponse weights

Weights to adjust for missing data (or other reasons) can be incorporated into the weight variable.

RCT-YES uses the studentlevel weights, w, , to adjust for nonresponse within blocks and uses the

block-level weights, w, = le W, , to adjust for nonresponse at the block level (if germane). RCT-

YES conducts the within-block nonresponse adjustments using the methods from Chapter 5 for

Design 1 that are applied to each block separately.

If nonresponse weights are specified using the BLOCK_FE=1 option, RCT-YES estimates (6.7) using
weighted least squares. Under this specification, the ATE estimator is a weighted average of block-

n,
specific impact estimates (adjusted for nonresponse) with weights p,, (1- pbW)zl:l W, , where

Dow = (Zl”; T,w,/ ZZ w, ). RCT-YES uses the following variance estimator for this specification:

h .
1 ;leizb(zb_pb)z(yjb_al(Tib_pb)—é‘b)z
(6.14) Asj/VarR(o?lW): =1 = |

—h— h
n(n ! l) [;"T’bpb(l_pb)qb]2

where W, Z(ZZ w, /n,). The same approach is used for the subgroup analysis using the

corresponding variance expression in (6.13).
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Assessing baseline equivalence

To assess baseline equivalence under the blocked design, RCT-YES conducts t-tests for each specified
baseline variable using the same methods as discussed above for estimating ATEs on study outcomes
except that it uses the pooled variance estimator in (5.39) or (5.52) for each block if BLOCK_FE=0.
To test the hypothesis that covariate means are jointly similar, RCT-YES uses Hotelling’s T-squared
statistic in (5.40b). The variance-covariance matrix for this joint test could be computed using

Y hooox h 2 g . . , .
Vi blocked = [Zb=l w, Vg, /(Z:b=1 w,)" ], where Vj, is the estimated variance-covariance matrix among

the baseline covariates in block b (see (5.40a)). RCT-YES, however, ignores the blocking and

A

estimates V; using the approach for Design 1; we adopted this approach because of the potential

for small sample sizes in some blocks that could yield unstable estimates of Vj, if there are a sizeable

number of baseline variables specified for the analysis. This same approach for the joint test is used

for the BLOCK_FE=1 option.

b. FP model with baseline covariates

To examine regression-adjusted estimators under the Neyman-Rubin-Holland model for the blocked
design, we use similar notation as in Chapter 5 for Design 1 and define X, to be a 1xv vector of
fixed baseline covariates for student i in block b. One approach for conducting the analysis is to
run separate regression models for each block. RCT-YES, however, does not use this approach
because of potential estimation problems for small blocks. Instead, as discussed in this section, RCT-
YES follows the approach used for the subgroup analysis for Design 1 by estimating full-sample

regression models that include block-by-treatment status interaction terms.

Full sample analysis

To examine the regression approach with covariates for the full sample, we use the regression model
in (6.6) where the explanatory variables include the centered covariates, X;, =(X, -X,), with
associated parameter vector Y. To be parallel with previous results, we discuss the asymptotic

moments of the multiple regression estimator by focusing on an SP parameter, that is closely related
to the FP parameter, where blocks are assumed to be fixed for the study, but where students within
blocks are assumed to be randomly sampled from a broader population. The considered parameter

is the cluster average treatment effect [CATE] parameter for block b: £, .., care = E; (¥, (1) = ¥, (0)).

Lemma 6.1 presents asymptotic moments of the regression estimator for the CATE parameter for
block b. The results are similar to those from Lemma 5.5 for the subgroup analysis for the non-

blocked design (Design 1); the key differences are (1) samples sizes are fixed for the block analysis

but not for the subgroup analysis and (2) treatment group sampling rates, p,, can differ across
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blocks. Thus, for simplicity, we present the new results in Lemma 6.1 in less detail than for Lemma
5.5 (by omitting the regularity conditions) and do not repeat the proof.

Lemma 6.1. Let ﬁAndus,b’MR’C e be the multiple regression estimator for the CATE parameter for block b.

A

Then, S

N and asymptotic variance:

eus o vk.caze 1S asymptotically normal with asymptotic mean B, .\ e

(6.15)  AsyVarg, (B sum.cazs)

1 - h - h
= Eg, (S, Tiz(yi =2 . BSyTy— ) 6,5, — X 7)2)9
n[pb(l_pb)qb]2 RI\Pipdin i bz_l‘, p9ind b bZ;, ¢9ib b

where Xy =x, — E (x,).

1

Based on this lemma, for Design 2, RCT-YES uses the following variance estimator for the FP ATE

estimator nclus ,b,MR ,FP :

MSE,, N MSE,,  (JMSE, —\MSE_,)’

(6.16)  AspVary (B, )= , where
R lus,b,MR ,FP np,q, n(l_pb)qb ng,
1 < 2 3 .
MSE, = ——— V= B,(1=p,) =6, =% 1),
” (n _v)pbqb -1 i:Sin’T;'bl ' ’ b b b
1 - A & o a2
MSE, = Z i+ B8Py =8, =X ¥)",

(n=v)1-p,)g, -1 -8y, =1,T, =0
q, =(n,/n),and p, =(ny/ny).

The regression-adjusted block-specific impact estimates and variances can then be weighted to yield
overall ATE estimates for the Design 2 FP parameter using the expressions in (6.3) and (6.4). RCT-
YES conducts hypothesis  testing for the pooled estimator using ttests with

h
(Z:b:1 (n,, +np)—v—2h) degrees of freedom (for block-specific t-tests, the number of degrees of
freedom is (1, +ny —vq, —2)). Nonresponse weights can be incorporated into the analysis by

estimating a weighted regression model using the weights w;, and using variance estimators for each

block that are similar in form to (5.51) for the subgroup analysis.

If the BLOCK_FE=1 option is specified, RCT-YES estimates the OLS model in (6.7) where the
explanatory variables include the centered covariates, X;,. The program uses the following variance

estimator for this specification:
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p

(T, - pb)2 Vi — dl,MR (T, — py)— Sb - iib’?y

>

b=l =1
n(n—v—h-1)

(6.17)  AspVarg (&, \z) = 7
[Z (1= py)g, I’
b=l

h
For this estimator, the degrees of freedom for hypothesis testing is (Z , Ny 1) —v=h=1).If

nonresponse weights are included in the model for this specification, RCT-YES uses weighted least

squares and a variance estimator analogous to (6.14).

Subgroup analysis

To incorporate covariates into the subgroup analysis for the blocked design, RCT-YES includes in
the regression model three-way interaction terms between the block, subgroup, and treatment status

indicators. Specifically, RCT-YES estimates the following regression model where the centered

covariates, X;, , are added as additional model regressors:

h s - h s
(618) Vi :ZZﬂgbGigSibT;gb +Z 5gbGigSib +77i»
b=l g=l1 b=1 g=l
where Tigb =(T, - p,) and 7, is the error term. In this formulation, B,, = B, ., ¢ s.um.sp 1S the ATE

parameter for subgroup £ in block b . The variance estimator for B i

MSETgb MSECgb . (\/MSETgb _\/MSECgb )2

+ , where

(6.19)  AsPVarg(B o, m) =

Tgh Neg Ny,
MSE 1 S 5 q 5 x4y
= ) _ _ _ _ X. ’
e (n- V)4, P o gh ~ 1 -Gy =1, S 1.7 =1 (yng 'ng 1= gb) gb lng)
! & : o
MSECgb - (yigb + gb,MRpgb - 5gb - Xing) s

(n=v)q,(1=Py)dg =1 iG =152, 0

L

4y =(n,/n), Py =npg/ny), and g, =(ny/'n,).

The regression-adjusted block-specific impact estimates and variances can then be weighted to yield

overall ATE estimates for each subgroup. RCT-YES conducts hypothesis testing for the pooled

h
subgroup estimator using ttests with (Z:b:1 (Mg + Ny ) —vq, —2h) degrees of freedom, where
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q,=(n,/n)= ZZ:] 4,4 is the proportion of all students in subgroup g . Nonresponse weights

can be incorporated into the analysis by estimating a weighted regression model and using similar

variance estimators as in (5.51).

Finally, if the BLOCK_FE=1 option is specified, RCT-YES estimates (6.12) using the centered

covariates and calculates the following variance estimator:

h Ngp ~ A
Z Z (T, _pgb)z(yigb _lBg,MR (7, —Pg)— 5gb _Xigh'Y)2
1

1 b=1 i:Gy=

n,(n,—v-h-1)

(6.20) AspVar (B, ) =

)

h
> py(-py)a.,T
b=1

where q;b =(ngb/ ng). For this estimator, the degrees of freedom for hypothesis testing is

h
(szl(nTgb +n¢y) v, —h—1). If nonresponse weights are used, RCT-YES uses a subgroup version

of (6.14) for variance estimation.

c. SP model without baseline covariates

For Design 2, the SP model yields different ATE parameters depending on researcher assumptions
about the multilevel sampling of study blocks and/or students within study blocks from broader
populations. By default, RCT-YES estimates the PATE parameter that assumes random sampling
from super-populations at all levels. This design could be germane, for example, in multisite
evaluations that include many school districts dispersed across a broad area targeted for the
intervention. RCT-YES can also estimate the CATE parameter (random sampling of students, but
not blocks) and the UATE parameter (random sampling of blocks, but not students) if the
CATE_UATE option is specified as a program input (see Table 2 in Chapter 2).

Importantly, for SP designs with multiple stages of actual or assumed random sampling of blocks and
sub-blocks, RCT-YES users should specify the BLOCK_ID for the highest sampling level, because
adjusting for variances at higher sampling levels incorporates variances for lower sampling levels. For
example, consider a multistage blocked SP design where (1) districts are randomly sampled for the
study (random blocks), (2) schools are randomly sampled within the study districts (random sub-
blocks), and (3) students are randomly assigned to the treatment or control groups within the study
schools. To estimate the PATE parameter for this design, RCT-YES users should treat districts—the
highest sampling level—as the random block and specify the BLOCK_ID as the district identifier, not

the school identifier for the lower level school sub-blocks.

For the statistical analysis, we assume infinite super-populations so that finite sample corrections do

not apply (this approach yields conservative variance estimators). In practice, however, users may
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want to assume random sampling from finite sample universes. Thus, RCT-YES allows weights to
differ across blocks.

Consider first the CATE parameter pooled across blocks, which can be expressed as
B ctus biocked CATE =(ZZ=1 WbE,(Yl.b(l)—Yl.b(O))/Z:Z:1 w,). We already considered estimators for

this parameter in Section 6b where we discussed the similar FP parameter for Design 2. The key
differences between the CATE and FP estimators are that the block weights could differ because the
CATE weights might reflect block population sizes rather than block sample sizes, and the FP
heterogeneity term does not enter the variances for the CATE parameter (but is multiplied by the
sampling proportion if the student universe is assumed to be finite). The BLOCK_FE=1 option can
be specified for the CATE parameter, in which case RCT-YES uses the variance estimator in (6.9).

The situations are more complex for the PATE and UATE parameters which yield random block
designs. In what follows, we first discuss the PATE parameter in detail and then briefly discuss the
UATE parameter as a special case of the PATE parameter.

The PATE parameter for Design 2 is
(6.21) ﬂnclus,blocked,PA e = Ep (X, (D=1,(0)),

which is the expected value of the treatment effect in the super-population of students (I') within

the super-population of blocks (B). To examine this parameter further, let i, = E,(¥,(1)) and
tey = E,(Y,(0)) be mean potential outcomes in [ for block b and let o7, =Var, (Y, (1)) and
o, =Var,(Y,(0)) be corresponding SP variances. We can then express the PATE parameter as

_ By Lty — 16, D

6.21 - ’
( Cl) ﬂnclus,blocked,PATE EB (Wb)

where the denominator is the average block size in the super-population (0 < E,(w,) <). In RCT-
YES, the default value for w, is the block sample size (7, ), but a broader measure of the block

population size might be more appropriate for the SP model.

As discussed next, the PATE parameter for the blocked design can be estimated consistently using a
simple differences-in-means approach, but the variance estimator is somewhat different from those
considered thus far because it represents the extent to which the estimated block-specific ATEs vary

across blocks due to the assumed random sampling of blocks.
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Full sample analysis for the PATE parameter

Consider the simple differences-in-means estimator for the PATE parameter:

h n h
~ ; Wbﬂnclus,b,PATE ; Wy, (yTb - be)
(622) ﬂnclus,blocked,PA TE — - h = A .

To show that this estimator is consistent, we can use the law of iterated expectations in several stages
by: (1) averaging over the randomization distribution (R ) conditional on the sample of students
and sites; (2) averaging the resulting estimator over all possible samples of students from [
conditional on the sample of sites; and (3) averaging over all possible samples of sites from B . Using

this approach, we find that

2N ErislW, O — V)] _Eyw,E, (Y —Ye)]

(6 23) ﬁnclus,blocked,PA TE

EB (Wb) EB (Wb)
:EB[W];(/UTb_‘Lle)]:ﬂ -lus.blocked .PATE
Ep(w,) A

which shows that £ .. ;.o pare 18 @ consistent estimator for the PATE parameter as the number of

blocks, &, approaches infinity.

The following new lemma presents the asymptotic properties of S, ..., .. The proof is in

Appendix A and adapts the approach in Imai, King, and Nall (2009) to the current context.

A

Lemma 6.2. Let :Bnclus,blocked, pare be the weighted simple differencesin-means estimator in (6.22) for the PATE

A

parameter in (6.21). Then, as the number of blocks, h, approaches infinity, ﬁnclus,blocked, pare 1S consistent and
asymptotically normal with asymptotic variance:

2 2
1 2 O Och

s[W;

hE g (w, )2 mp, m,(1-p,)

(6.24) AsyVaryy (B s socted.pare) = )+ Vary(w, (g, = b)) |-

A consistent estimator for the variance in (6.24) is

A 5 1 U A — A 2
(625) AS_)/ VarRlB (ﬂnclus,blocked,PATE) = W Z (Wb nclus,b,PATE ~ W, nclus blocked ,PA TE) :
- b=1

83



6. Design 2: Non-clustered, blocked

This variance estimator represents the extent to which the estimated ATEs vary across blocks.
Intuitively, if the experiment were re-run multiple times, a different set of blocks would be selected
each time along with their associated treatment effects. Thus, the relevant variance term is the extent
to which impacts vary across blocks. This is different than the FP model where the concern is with

the variances of student outcomes within blocks.

RCT-YES conducts hypothesis testing for this specification using t-tests with (A—1) degrees of

freedom. The degrees of freedom are based on the number of blocks because blocks are the assumed

primary sampling unit.

For the baseline equivalency analysis for the PATE parameter, RCT-YES uses (6.25) applied to each
baseline covariate. Similarly, to test the hypothesis that covariate means are jointly similar, RCT-YES
uses Hotelling’s T-squared statistic in (5.40b) where the covariances between the baseline covariates

k and k' are estimated as follows:

1 h . A n .
— Z(Wb ctis 5, PATE &~ WPBetus wiocked paTE 5 )W Prctus b, pate 0 = Whctus blocked,paTe 1) -
(h—=Dhw" 4=

(6.25a)

Subgroup analysis for the PATE parameter

Similar methods for estimating the PATE parameter for the full sample can be used for the subgroup
analysis: the simple differences-in-means estimator in (6.22) and the variance estimator in (6.25) can

be applied separately for each subgroup g:

1

ASVVaryg (Bctus ¢ piocked,pare) = (h——

h

A oA 5

l)hwz Zng (ng nclus,g,b,PATE _Wg nclus,g,blocked,PATE) °
g b=l

where ng equals 1 if block b contains individuals in subgroup g and 0 otherwise. RCT-YES users

can specify different block-level weights (w,, ) for different subgroups.

For the random block design, the estimated treatment effects of individuals within the same block
could be correlated due to shared block effects (for example, common environmental factors). Thus,
to test the null hypothesis of no differences in treatment effects across subgroups for the PATE
parameter, RCT-YES uses the chi-squared test in (5.35) where the covariances between the impact

estimates for subgroup gand g'are estimated as follows:

1 U * N —k A * N —_—%
(6.25b) z Gbngg' (Wbﬂnclus,g,b,PATE W Pctus,g blocked PATE )(Wbﬂnclus,g',b,PATE -W nclus,g',blocked,PATE) )

(h=D)hw™ 45
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where w, is the sum of the weights in block b for all individuals included in the subgroup analysis,

_ h , . . .
w = z it w, / h, and other terms are defined above. In this covariance expression, only blocks that

contain both subgroups contribute to the numerator term but all blocks with any subgroup

contribute to the denominator term.

We considered using an alternative approach where the calculations for each covariance would be
conducted using only blocks that contain students in both subgroups. A problem with this approach,
however, is that the samples used to calculate the covariances could differ across subgroup pairs,
because some blocks might not contain all subgroups. This could lead to (i)x matrices that are not
positive definite. Restricting the analysis sample to only those blocks that contain all subgroups could
help with this problem, but the resulting sample could be small and nonrepresentative if some
subgroups are concentrated in certain blocks. Thus, as a compromise, RCT-YES uses all blocks to

calculate each covariance, where blocks without particular subgroups do not contribute to the
numerators of (6.25b) but enter the denominators. The diagonals of @, (that contain the variances

of the subgroup impacts), however, are based on (6.25) that is applied separately to each subgroup

using only blocks that contain students in the considered subgroup.

Importantly, the estimated subgroup covariances could be unstable in certain real-world applications
(for example, for evaluations with small samples in some blocks), thereby yielding unreliable chi-
squared statistics. In these cases, users can set the NO_COV_SG option to 1 to exclude the
covariance terms from the subgroup interaction tests. This approach will likely be “conservative”
(that is, yield upper bounds on p-wvalues). Users might want to compare p-values using the

NO_COV_SG = 0 specification (the default) and the optional NO_COV_SG = 1 specification.

The UATE parameter

The UATE parameter is a special case of the PATE parameter where students are no longer assumed
to be representative of a broader block population, but only of themselves. This parameter can be

expressed as follows:

ﬂ :EB[Wb(?Tb_YCb)]
nclus blocked UATE EB (Wb)

and can be interpreted as the expected ATE of students who would be observed if their block was
sampled for the study from the super-population of blocks.

Similar methods to those used in (6.23) for the PATE parameter can be used to show that the simple
differences-in-means estimator is consistent for the UATE parameter (where averaging is conducted

sequentially over the randomization distribution and the sampling of sites, but not the sampling of
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students within sites). Furthermore, using methods similar to the proof of Lemma 6.2, the

asymptotic variance of B, .. socked uaze €N be shown to be

1 S’ S’ S? - —
E,[w, (= + ——— =)+ Var,(w, (Y, - Y,,) |,

(6.26) AsyVar, EE—
hEB(Wb)2 ’ m,p, nb(l_pb) 1,

RB (ﬂnclus,blocked,UATE )=

which can be consistently estimated using (6.25). Thus, estimation methods for the UATE and

PATE parameter are similar; the only potential difference is the choice of weights.

d. SP model with baseline covariates

RCT-YES can incorporate baseline covariates into the SP models to obtain regression-adjusted impact
estimates. For the CATE parameter, RCT-YES estimates regression-adjusted impacts using the same
approach as for the FP parameter where (6.6) with centered covariates is estimated using weighted
least squares. This approach yields consistent ATE estimators for the CATE parameter, which can

be shown using Lemma 6.1 and arguments similar to those in (6.23).

RCT-YES uses a two-stage estimation procedure to incorporate baseline covariates for the PATE and
UATE parameters. First, RCT-YES estimates (6.6) to obtain regression-adjusted, block-specific impact
Second, RCTYES estimates the following model, where 3 is

estimates, ﬂ nelus b, MR, PATE

nelus ,b,MR ,PATE *

regressed on the centered block-specific covariates, X, = (X, -X, ), using the weights w, :

(6.27) ﬂnclus,b,MR,PATE = ﬂo +X, Y+,

where X, is a vector of weighted covariate means. This specification models the block-specific

impacts as a linear function of block-specific covariate values. Due to the centering of the covariates,
we have that =/, clus.blocked MR.PATE 15 the regression-adjusted impact estimator for the PATE
parameter. Note that the inclusion of X, does not change the impact estimate. Using similar

methods to those in Lemma 6.2, it can be shown that [, is asymptotically normal with an

asymptotic variance that can be consistently estimated using predicted values from the fitted model

in (6.27):

1

(6.28)  AspVarg(B)) = m

h
o — A >~ A 2
Z (W, Boctus s vm pare = WDy +Xp7))°,
b=1

where V is the number of covariates in (6.27). Imbens and Rubin (2015) discuss a similar estimator

for matched pair designs without weights, but not for the current context.
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An alternative specification is to omit the first stage regression and to include in (6.27) the vector of
differences between the block-specific covariate values for the treatment and control groups,

d, =(Xp, —Xcp) - RCTYES, however, does not adopt this approach to minimize losses in the

number of degrees of freedom for hypothesis testing.

For the subgroup analysis, RCT-YES estimates the following variant of (6.27) using block-level data

stacked for each subgroup:

(629) ﬁnclus,g,b,PATE Zﬁgng + ngy + ugb )

g_

where Xy, = (X, - X, ). In this model, B, = B, s ¢ viocked sr.pare 18 the impact estimator for the
PATE parameter for subgroup &, with an asymptotic variance that can be consistently estimated

using the following expression:

(6.30)  AsyVary, (;Bg) welus.g b.PATE — W, (:Bg + ngY))z

(h—vq, —l)h_2 Z

— h . .. . .
where W, = Zb:I GyWgy /h and g, =n, /n.To conduct chisquared statistical tests of differences in

estimated impacts across subgroups, RCT-YES adapts (6.30) to (6.25b) to estimate the subgroups

covariance terms.

Importantly, if the number of blocks is relatively small, only a very small number of covariates can
be included in the regression models in (6.27) and (6.29); otherwise model over-fitting problems
could arise and degrees of freedom losses could lead to regression-adjusted estimators that are less
precise than the unadjusted estimators. As discussed, by default, RCT-YES will only estimate
regression models with covariates if the ratio of the number of observations—blocks in this case—to the

number of covariates is at least 5.

Finally, if the data contain too many blocks, RCT-YES will always invoke the PATE option. This
procedure overcomes potential constraints in R and Stata (and user operating systems) on the
number of righthand side variables that can be included in the estimation models. RCT-YES will

invoke the PATE option for a particular analysis if the total number of model covariates (2/s + v) is

greater than 200.
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e. Matched pair designs

Matched pair designs are blocked designs with one treatment and one control unit per block. Under
these designs, similar study units are paired using observable baseline measures and one unit in a
pair is then randomly assigned to the treatment group and the other to the control group. Matched
pair designs are common in education research—especially for clustered designs—when sample sizes
are small. These designs help avoid the possibility of a “bad draw” where, for example, higher ability
students (as measured by their prior year test scores) are disproportionately assigned to one research
condition. Matching can be performed using common algorithms that compute “distance” matrixes
between study units based on the closeness of their matching variables, which are then used to

identify the best pairings across the sample to minimize a global distance metric.

RCT-YES does not perform pairwise matching, but can accommodate such designs. Matched pair

designs can be specified in RCT-YES by setting the MATCHED_PAIR variable equal to 1 and
specifying code names for the matched pairs using the BLOCK_ID variable (see Table 2).

Importantly, for these designs, RCT-YES includes pairs (blocks) in the analysis only if both members
of the pair have available data.

The simple differences-in-means estimator in (6.3) or (6.23) produces unbiased estimates for

matched pair designs. Depending on the parameter of interest, the pairs can be weighted equally

(w, =1) because each pair has two students or, if germane, based on some broader pair

population size.

For matched pair designs, without further assumptions, variance estimators for the FP model are not
identifiable because each pair contains only 1 treatment and 1 control group member (Imai, King,
and Nall, 2009; Imbens, 2011). To address this issue, RCT-YES estimates ATEs for matched pair
designs using the SP variance estimator in (6.25) for the PATE parameter. Imai, King, and Nall
(2009) recommend this approach for clustered, matched pair designs and show that the variance
estimator in (6.20) is conservative (an upper bound) for the FP parameter. Baseline covariates can

be incorporated into the analysis using the same approach discussed above for the PATE parameter.

RCT-YES uses the same methods for the matched pair design for subgroup analyses. A potential
problem with these analyses is that each member of a pair may not always have the same values for
the subgroup variables—that is, the pairing can be “broken” in some cases. RCT-YES excludes such
broken pairs from the analysis. If this problem is common, users may want to exclude problem

subgroups from the analysis.
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f. The CACE parameter

For Design 2, RCT-YES estimates the CACE parameter (if requested) using the same general
methods as for Design 1. The CACE parameter is estimated by dividing the estimated ATEs for the

outcomes ( /) by the estimated ATEs for the service receipt variables ( p,, ) for the pertinent Design

2 specification. This approach can be thought of as a weighted average of CACE estimates for each

block, where the weights are proportional to the compliance rates in each block. To see this, consider

the default FP model and let S, represent the ATE estimate for an outcome for block b and let
Dy.c; represent the ATE estimate on a service receipt indicator variable. The CACE estimator can

then be expressed as follows:

h ~ A
Zb:lwbﬂb :zh w By

h ~ b=1"b ~
ZH Wy Ph.cr Py.c1

/BCACE =

)

where w, =w, P, o / ZZ=1 W, P, ;. - Thus, the CACE estimator is a weighted average of the block-

specific CACE estimates ( ﬁb / Py ;) where the weights are proportional to w, p, ; .

To calculate standard errors of the CACE estimates, the program uses (5.57) where the variance

terms are calculated using the pertinent Design 2 variance formulas for # and p,, . For the default

FP model with BLOCK_FE=0, the covariance (final) term in (5.57) is calculated using

h
2 ~A o A
. Z W, CoV (Bt . rp> Pevs)
(63 1) COVR (ﬁnclus,blockedfP s pCL,b) = = h )

where Cov, (lénczus,b, rps Pey ) 1s calculated using (5.58) applied to each block, and similarly for the

CATE model. If BLOCK_FE=1 for the FP or CATE models, RCT-YES ignores the covariance terms.
For the PATE and UATE models, RCT-YES calculates the covariance terms using

(6.30) AsyCovyy, (ﬂnclus,blocked,PATE ,Der)

1 h n n
—2 Z (Wb nclus,b,PATE ~ W, nclus ,blocked ,PATE )(Wbpb,CL —WPcr )

~ (h=Dhw’ 3
Finally, to assess differences in treatment effects across subgroups for the PATE and UATE models,

RCT-YES ignores the final term in (5.57) for the chissquared tests if NO_COV_SG = 0, but includes
this term if NO_COV_SG = 1.
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7. Design 3: The clustered, non-blocked design

This chapter discusses ATE estimators under the Neyman-Rubin-Holland model where clusters or
groups (such as schools or classrooms) rather than students are randomly assigned to a treatment or
control condition within a single population. Under these designs, all students within a cluster (for
example a school) are assigned to the treatment or control status of their cluster. These group-based
designs are common in education research, because education RCTs often test interventions that
are targeted to the group (for example, a school re-structuring initiative or professional development
services for all teachers in a school). Thus, for these types of interventions, it is infeasible to randomly
assign the treatment directly to students. Furthermore, clustered designs can help minimize the
potential spillover of intervention effects from treatment to control students, thereby increasing the
plausibility of the SUTVA condition that underlies the Neyman-Rubin-Holland framework (see
Chapter 4).

For clustered designs, RCT-YES estimates ATEs using design-based methods where individual-level
data are averaged to the cluster level. Accordingly, RCT-YES can accommodate data in two formats.
First, the program can use individuallevel data that RCT-YES averages to the cluster level
(CLUSTER_DATA-=1). Second, the program can use data that have already been averaged to the cluster
level, for example, average student test scores in a study school (CLUSTER_DATA=0). For this
option, a separate set of cluster-level means is required for the full sample analysis as well as for each
subgroup analysis. Furthermore, for this option, users are required to include the CLUSTER_FULL
variable in the input data file that indicates whether the cluster average pertains to the full sample
or a subgroup (see Table 2). Furthermore, for this option, users must specify the STD_OUTCOME
input variable that specifies the studentlevel standard deviation for each outcome for the control

group if users want the estimated impacts to be scaled into effect size units in the output tables.

RCT-YES requires that non-missing cluster identifiers be specified for each observation in the input
data file; otherwise the analysis is not performed. The cluster identifiers could be masked to hide
the true identities of the clusters. RCT-YES includes clusters in the analysis that have at least one
student with available outcome data. This holds for both the full sample and subgroup analyses. The

program produces summary statistics on cluster sizes and weights (if specified).

The approach of averaging the data to the cluster level makes it clear that clustered designs have less
statistical power than non-clustered ones. Although not readily apparent, variance estimators under
HIM models are also largely based on the variation in mean outcomes across clusters. The key
difference between the HLM and design-based approaches is the weighting scheme used to pool
clusters for impact estimation; HLM methods use precision weighting (which requires the estimation
of model variance components), whereas design-based methods use weights based on the ATE

parameter of interest and associated sampling theory (see Chapter 4).
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In the remainder of this chapter, we discuss ATE estimators and their standard errors for the FP and
SP models for Design 3. As before, we consider models with and without baseline covariates. There
is a much smaller literature on design-based models for clustered designs than non-clustered designs.
However, with some slight modifications, the methods for non-clustered designs largely apply to

clustered designs where data are averaged to the cluster level.

For simplicity, we hereafter refer to clusters as “schools,” although clusters could also be classrooms,

school districts, or other groups of students. For the analysis, we use similar notation as in Chapter

“

5 with the addition of the subscript “;” to indicate schools. For instance, ¥;(I) and ¥;(0) are

potential outcomes for student I in school j, y; is the observed outcome, and T, is the treatment

status indicator variable that equals 1 if school j is randomly assigned to the treatment condition
and O for control schools. We assume that the sample contains m schools with m, =mp treatment

schools and m. =m(1— p) control schools, where p is the sampling rate to the treatment group

(0< p<1).Itis assumed that school j has 7; students.

a. FP model without baseline covariates

In this section, we discuss simple differences-in-means estimators for the FP model, first for the full
sample analysis and then for the subgroup analysis. We also discuss the calculation of intraclass
correlations (ICCs), the use of nonresponse weights, and baseline equivalence tests. For the FP
model—which is the default in RCT-YES—student and school potential outcomes are assumed to be
fixed for the study.

Full sample analysis
The ATE parameter for the FP model for the clustered design is
> w,(Y;()-7,(0))
=
(71) ﬂclus,FP = m
2%,

J=1

M

where w is the fixed school weight and Y,(1)=(3_" ¥;(1)/n;) and ¥;(0)=(D_" ¥;(0)/n;)

are mean potential outcomes in the treatment and control conditions, respectively. The ATE

parameter f3,, . is a weighted average of the ATE parameters in each school.

A central research question is whether interest lies in intervention effects for (1) the average student

in the sample (w; =1 and w; =n,) or (2) a student in the average school in the sample (w;, = (1/n;)

92



7. Design 3: Clustered, non-blocked

and w; =1). This distinction will only matter if student sample sizes vary across schools and ATEs
vary by school size. The default weight in RCT-YES is w; =1, so that each school is weighted equally

in the analysis; this weighting scheme aligns with the random assignment mechanism. In this case,

the ATE parameter is £, r» = (Zj; ()7] - }7](0)) /m).

If interest lies instead in ATEs for the average student, RCT-YES users can include a weight variable

in the input data file where w, =1 for each observation. In this case, f,,, z» is conceptually similar
to the ATE parameter for the non-clustered design. To demonstrate this more formally, if w;, =n,,

we can express the ATE parameter as a function of studentlevel potential outcomes as follows:

(12 Bosr =TO-F©) =23 3 (3, ()-¥,(0))

=1 =l

where n = Zj; n, is the total student sample size. [t is clear that (7.2) is the average ATE for students

in the study sample.

For the clustered design, the data generating process for the observed mean outcome for a school,

Vv, = (z:zl Yy /n;), can be expressed as follows:
(13) 5, =T,7.()+(1-T)Y(0).

This simple relation underlies all the estimators and standard errors for S

C

us.pp that are developed

in this section and that are used in RCT-YES.

In what follows, our statistical analysis considers the general case where weights differ across clusters.
The default RCT-YES specification where cluster weights are equal is a special, simplified case of the

more general analysis.

Consider the simple differences-in-means estimator for £, »:

Z WY, Z
JT;=1 . JT

mC _
) Owjyj
(7.4 Bawsrr = JZ’TW _JZ’CW = jr:c S o
2 W ZOWJ ;WJTJ ;WJ(I_TJ)

JiT;=1 JT;=

SwITM) 3w, A-T)7,0)

This estimator is biased in finite samples if the weights differ across schools (and school-level ATEs

are heterogeneous), because the denominators in (7.4) will depend on the particular allocation of

93



7. Design 3: Clustered, non-blocked

schools to the treatment and control groups. To see this, consider an example with w; =n , where

the sample contains 4 schools with respective student sample sizes (n,,n,,n,,1,) . Accordingly, the

true ATE parameter for the sample is

> n,(Y;(1)-Y,;(0))
(7.5) L . .

ijl n;

Suppose next that 2 schools are randomly assigned to the treatment group and 2 are randomly

assigned to the control group. Note that there are 6 possible allocations of the four schools to the
treatment and control groups. As an illustration, if the first two schools were selected for the

treatment group, the estimated treatment effect would be

{nlmﬂnzza)HngZ(mm“Z(O)}

n +n, ny+n,

and similarly for the other 5 possible treatment-control allocations. Averaging over all six equally

likely outcomes yields

A 1 4 _ 4 7.
(7.6) Eg (ﬂcluS,SP) :_Z(Yj(l)_Yj(O)) Z ! .
(e mn
For (7.6) to be unbiased for the ATE parameter in (7.1), either of three conditions must hold: (1)
the ATEs are homogenous across schools (that is, (17] - Y] (0)) =k for some constant k); (2) school

sample sizes are equal; or (3) schools are weighted equally (the default in RCT-YES). Otherwise

Boussp is biased in finite samples.
If the weights differ across schools, however, the simple differences-in-means estimator is
asymptotically unbiased as the number of schools, m , approaches infinity. The parameter in (7.1)

is still the FP parameter of interest, but it is convenient to conduct the analysis using an asymptotic

version of this parameter. To define this parameter, we assume that for large m :

(7.7a) > w;/m——>E;,(w,;) and
" .

(7.7b) Z’;’ZIWJ(YJ.(D—17j(0))/m—>EFP(ijTEj),
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where ATE ;= (Y] - YJ(O)) is the ATE parameter for school j, and E, signifies expectations

over the increasing sequence of finite populations, which are assumed to be fixed, nonnegative real

numbers. Using (7.4), we find then that as m approaches infinity:

(7.8) ,BAclus’FP N E, (TJ)EFP(W_;'Y_,'(D) _ E, ((1_T/)EFP(W_;Y_/(O))

Eg (]})EFP(Wj) ER(I_T/)EFP(WJ')
_EnOnGO-F0)_
EFP (Wj) clus,FPa*

The parameter f3,,, ,p, is the large-sample FP parameter for our analysis of the clustered design.

Note that (7.8) holds because 7', is independent of both the schoollevel potential outcomes

()7] 1), Z(O)) and school-level weights (w;) due to random assignment.

One approach suggested by Imbens (2011) for minimizing the bias of ﬂlm’ - when weights differ

across schools is to group treatment and control schools into blocks with similar weights (for
example, with similar sample sizes). An unweighted analysis can then be conducted in each block
and the full sample estimate can be calculated as a weighted average of the block-specific impact

estimates. Variance estimates can be obtained using a similar approach.

RCT-YES does not employ this poststratification approach, however, because of the difficulty in
automating this approach without some user input on how to create the school strata (such as the

number of strata to select and the associated cutoff values for defining the strata). Instead, RCT-YES

adopts a largesample approach to calculate the variance of 8, zp .

To examine the asymptotic properties of 5, z» (and corresponding estimators that include baseline

covariates), we use the relation in (7.3) to develop a regression model similar to the one used for the

non-clustered design:

(79) .)_/] zﬂ() + clus’FP(T'] _p)—l_’]]? Where

B =Ty ()=, (0) = iwj(Z(l) ~T0)/ W,

By = pY, () +(1- p)¥;, (0),

n,=a; +Tj(Tj - D)

a, = p(Y,() =%, () +(1- p)(T,(0)~ ¥, (0)),
7, =(¥,() =%, (1)~ (F,(0) - %, (0).
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Note that (7.9) can be derived by averaging the following regression model at the student level to the

school level:

(1.9a) vy = Po+ Bos,rr(T; — ) +(u; +e;), where
u, =T,(¥,()= ¥, (1) + (1=T,)(T,(0)=T;,(0)) and
e =T,(Y,() =Y, (1) +(1-T,)(¥;(0) - ¥,(0))

are school- and student-level error terms, respectively. Note that the studentlevel error terms, e,

disappear when averaging this model to the school level.

The following lemma provides the large sample properties of the weighted least squares estimator

for B, .us.rp in (7.9) using the weights w; the proof is in Appendix A (see also, Schochet 2013 for

a proof of a special case of this lemma).

Lemma 7.1. As the number of schools, M , increases to infinity for an increasing sequence of finite populations,

assume that
m 1 m _ _

(7.10) > w,/m— Ep(w)), ZZWJ(Y]-(D—YJ-(O))—)EFP(WJATEj),
Jj=1 Jj=1

1 < 2/v = 2 o2 1 ug 5= = 5 =
(m_l);Wf(Yj(l)_YW(l)) - S s W—_DJZ}W](Y](O)—YW(O)) - S,

o 2 T O-E, )~ 0~ F, ) - 5.

Y

where the asymptotes are fixed, nonnegative, real numbers. Then, the weighted least squares estimator, B, 1p»
is asymptotically normal with asymptotic mean B wp, = Epp(W,ATE )/ Ep(w;) and asymptotic

variance:

(D) AVary(B )=y S0y S Son
. R\Fclus,FP EFP(WJ)Z mp m(l_p) m .

The variance formula in (7.11) is very similar to the corresponding variance formula for the non-

clustered design in (5.8) for Design 1. The first two terms in the brackets, S, and S2, , pertain to

the extent to which school-level potential outcomes vary across schools. The S72, term pertains to the
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extent to which school-level treatment effects vary across schools, which is not identifiable because we

can only observe the outcomes of schools in either the treatment or control condition, but not both.

RCT-YES uses the following upper-bound variance estimator for (7.11):

(7.12) AspVar (B ) St n Scw 1 (STW Sew )2, wh
. = —— (= , where
VP AR Petus, wimp  wim(l—p) m W, W,

2 1 & 20— = v o G 2= =
STW:——I Z Wj(yj_yTW) s Sow = 1 Wj(yj_yCW) )
my —1 ;=1 me—1 ;=0
I P _ 1 E
Wp =— Z Wi, We=—— Z Wis
My jiT;=1 Me jT:=0

and p=(m;/m). Note that if w,=n;, we can express sp, and s¢, in terms of studentlevel

outcomes as follows:

mpo RN
2
STW -1 (yl] yTW)(ylj yTW) and
My —1 =1 1 =
me ;o _ _
Sew = 1 Z (yij_yCW)(yi’j_yCW)a
mC J: /:0 i=1 i'=1

which pertain to the extent to which studentlevel potential outcomes vary and co-vary across
students within the same schools. Similar robust variance estimators can be obtained using the
generalized estimating equation (GEE) approach developed by Liang and Zeger (1986) for clustered
data assuming an independent working correlation structure, an identity link function, and the

empirical sandwich variance estimator.

RCT-YES conducts hypothesis testing for the clustered FP design using ttests with (m, +m_.—2)

degrees of freedom. The number of degrees of freedom is based on the number of schools because

the analysis is conducted at the school level.

Calculating intraclass correlation coefficients (ICCs)

Design effects for a clustered design are typically defined as the inflation in the variance estimates
due to clustering relative to a simple random sample design of the same size. Cochran (1977),

Donner and Klar (2000), Kish (1965), and Murray (1998) discuss the calculation of design effects in
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terms of the intraclass correlation coefficient (ICC), which is the proportion of variance in the

outcome that lies between clusters. This relationship is often approximated as follows:

(7.13) Deff-Clus =1+ p(n-1),

where O is the ICC and 7 = (Z:l:] n;/m) is the average cluster (school) size. The ICC is an

important parameter to help interpret variance estimates for clustered designs and to calculate

statistical power to assess appropriate sample sizes when designing clustered RCTs.

If data are provided at the individual level, RCT-YES calculates p in two steps: (1) estimating
Deff'-Clus by dividing the variance estimator for the clustered design in (7.12) by the variance
estimator for the non-clustered design in (5.10) and (2) solving for © in (7.13). This yields the

following estimator for O :

,b — 1 (AS-)A; VarR (Bclus,FP) i
(I’l B 1) V&I/R (ﬂnclus,FP)

(7.14) 1.

RCT-YES reports 0 and Deff-Clus in the program output for full sample analyses. To ensure

consistency of ICC calculations across studies, RCT-YES uses (7.14) to calculate P for all considered

clustered designs for Designs 3 and 4, including FP and SP designs and models with and without

baseline covariates. The ICC is not reported for matched pair designs.

Subgroup analysis

RCT-YES requires that subgroups be defined as categorical variables. If the input data are provided at
the individual level (CLUSTER_DATA=1), RCT-YES conducts the analysis by creating school-level
averages for each subgroup. For instance, to examine gender subgroups, the program would create
two school-level averages for a co-ed school—one for girls and one for boys—but only one school-level

average for a single-sex school. The program also creates subgroup indicator variables, G, , for each

school-level average. For instance, for the co-ed school from above, these indicators would take the

values G, =1 and G, =0 for the girl observations and G, =0 and G;, =1 for the boy

observations.

If the input data are provided at the cluster level (CLUSTER_DATA=0), the data file must contain
school-level averages for the full sample as well as for each subgroup. Stated differently, the data file
must parallel the constructed subgroup data file described above when CLUSTER_DATA=1. The
data file must also contain an indicator variable specified in CLUSTER_FULL that signifies whether

the school-level average is to be used for the full sample analysis or a subgroup analysis.

98



7. Design 3: Clustered, non-blocked

Using this data structure, the same methods discussed above for the full sample can be used to
estimate ATEs for subgroups, because random assignment ensures that 7, 1L (Yy(l),YU(O))

conditional on any covariate value defined by prerandomization characteristics. The simple

differences-in-means estimator for the ATE parameter for subgroup g is

Mg Meg
; Z WieYie Z WigVjg
(7 15) ﬁ _ = = _ ]:ngzl,szl . J:ngzl’szo
. clus,g,FP — Y1gw — Ycew e - ’
. ng . Z ng
]:ngzl,Tj:] ]:ngzl,Tj:O

n

j
where G, is a subgroup indicator variable defined above; 3, =( Z Vig/Mjg) is the mean
i:Gjjg =1

outcome for subgroup & in school j; n,,

is the number of students in the subgroup; m,, and

m,, are the respective number of treatment and control schools that contain students in the

g

subgroup; and w, is the school-level weight for the subgroup analysis.

Using Lemma 7.1 applied to subgroup £ and similar arguments as for the subgroup analysis in

Chapter 5 for Design 1, we find that [, . s is consistent and asymptotically normal with an

asymptotic variance that can be estimated as follows:

. S7 % 1 Srew  Scew
(7.16) ASJ}VarR(ﬂclus,g,FP): — (U — Cg;V ——(_L—_L)z,where
WTgmgpg chmg( _pg) mg WTg ng

2 1 et 2 = 2 2 1 & 2 = 2
Stew = 1 Wig(Vje = Vrew)™s Scew = 1. Wig(Vjg = Vegw)™s
Tg Jngzl,szl Cg ]ngzl,Tj:()
ng ng
Wrg = Z Wig» Weg = Z Wigs
ng jITj:1 ng jITjZO

and p, =(myg, /m,) is the observed proportion of all schools in the treatment group that contain

students in subgroup g . RCT-YES conducts hypothesis testing for the subgroup analysis using t-tests

with (m;, +m, —2) degrees of freedom.
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For Design 3, the mean outcomes of student subgroups (for example, girls and boys) within the same
school could be correlated. This occurs because students in the same school share a common
treatment status and school-level potential outcome. To adjust for these correlations in the joint chi-
squared tests in (5.35) to assess differences in subgroup impacts, RCT-YES estimates the covariances

between the outcomes of students in subgroups & and g’ as follows:

(71661) CévIRS (Bclus,g,FP’ﬁclus,g',FP) = ATW (g,g ) + ACW (g,g ) where

mpv_v;z m(l— p)vT/Z2 '
Ary(g,8) = o —1 TZIngng'sz(ng _yTgW)(ng’ _yTg’W) and
T JT=
] 1 mc *2 — = J— =
Acw(g,8')= o —1 TZO ngng’Wj (ng _ngW)(ng’ _ng’W)’
C J: j=

* . . . . . .
wherew; is the sum of the school j weights across all school-level observations included in the
. —* —* . .
subgroup analysis, and W, and W, are associated mean values. These covariances are used to

construct the variance-covariance matrix, @, , in (5.35) to conduct the joint chisquared tests. Under
this approach, schools without particular subgroups do not contribute to the numerators of (7.16a)
but enter the denominators. The diagonals of @, (that contain the variances of the subgroup

impacts), however, are based on (7.16) using only schools that contain students in the considered

subgroup (see Chapter 6c¢ for further discussion of this approach).

Including nonresponse weights

If the input data file contains individual-level data and weights that adjust for data nonresponse (or

for other reasons), RCT-YES uses the weights (w;) to estimate school-level means using the formula
—_ Vl/- n/' . .
Viw = (Zi:1 W, ;! Z[:l w;) . The program also incorporates nonresponse adjustments at the school

0,
level (w, = 25;1 W) to aggregate school means to obtain overall ATE estimates.
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Assessing baseline equivalence

To assess baseline equivalence for the clustered FP design, RCT-YES conducts t-tests for each baseline
covariate specified in BASE_EQUIV assuming equal variances for the treatment and control groups.

For baseline covariate k, RCT-YES calculates the following t-statistic:

(7.17) tkWZSkW/\/S,zW(L+L),Where
m m

T C

Owr = (Xpur —Xcuw ) » Xy and X, are covariate means across all schools,

(s /) + (me =52 | 72) L R T
{2 _ (my =Dy / W7 C aw ! We) 2 -~ WX, — X ),
kw — my + M. — P Tkw — (mT _1) ];1 Jjk Tkw

2
and Sy = _1 Z W (xjk Yo )
( C )jT =0

RCT-YES also uses Hotelling’s T-squared statistic to test the hypothesis that covariate means are
jointly similar:

(7.17a) 8}, V3! &y, (my +me—v=1)/(my+me—2)v,
where the vector SW contains the ng S,

VaW(k,k,):(mT_1)[S%W(k,k’)/w%]+(mc_1)[Séw(k,k')/wg,][1 N 1

my+mg—2 my  mg
2 ] 1 < 2(= = = =
STW(kak ) :m .;le (xjk _kaW)(xjk' _ka'W) , and
r Jj=
2 ' 1 < 2(—= b v ¥
Sew (k. K) Zm .TZOWJ' (¥ = Xeun )X =X ).
C JL=

This statistic is distributed as F'(v,m, + m. —1—v) where V is the number of covariates. By default,

RCT-YES uses the rule that there must be at least 5 clusters per covariate for clustered designs or the

joint test is not performed, although the cutoff rule of 5 can be changed using the OBS_COV option
(see Table 2).
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b. FP model with baseline covariates

For clustered designs, RCT-YES conducts multiple regression analyses using covariates averaged to
the cluster level. These covariates can be student-related measures (for example, average student test
scores in the school); teacher-related measures (for example, the percentage of teachers in the school
with an advanced degree); or school-related measures (for example, school size or an indicator of
whether the school is in a rural or urban setting). Importantly, program users should only input a
small number of highly predictive covariates for the analysis. RCT-YES requires that the sample
contains at least 5 clusters per covariate or the regression analysis is not performed. Thus, with 20
schools, the model can include at most 4 covariates in addition to the intercept and treatment status
indicator variable. The cluster-to-covariate ratio, however, can be changed using the OBS_COV
input statement. For clustered designs, a missing covariate is imputed using the cluster-level mean if
it is available; otherwise, the same imputation rules are applied as for Designs 1 and 2 using cluster-

level data (see Chapter 5, Section i).

Next, we discuss the multiple regression estimator for the clustered design under the FP model, first
for the full sample analysis and then for the subgroup analysis. We do not consider models with

covariate-by-treatment status interaction terms for the reasons discussed in Chapter 5 for Design 1.

Full sample analysis

To examine the statistical properties of the weighted multiple regression estimator using the weights
w;, we use the regression model in (7.9) where the explanatory variables include a 1xv vector of
fixed baseline cluster-level covariates, X , with associated parameter vector Y. As with the non-

clustered design, the covariates are irrelevant variables and the ATE parameter for the FP model

without covariates ( . 1p, in (7.8)) pertains also to the model with covariates. Note that we do not

need to assume that the true conditional distribution of ¥, given X, is linear in %, .

Let Z; =(1 T, X;) be a vector of model explanatory variables. The weighted multiple regression

estimator for the ATE parameter using the school-level weights w, is
R m 1 n
_ ==\ = =
(7.18) :Bczus,MR,Fp,W = [(Zl ZjoZj) 21 ZW;y,; ](2,2) .
Jj= i=

To examine the asymptotic moments of £, it simplifies the proofs to instead use the centered

lus ,MR ,FP "’

covariates 7 and X;, where T, =(7; — p) and X, =(X, —X,, ) for school j and covariate k;

apart from the intercept, this centering has no effect on the parameter estimates. The following

lemma uses similar results in Schochet (2013). The proof is in Appendix A.
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Lemma 7.2. As m approaches infinity, assume (7.10) and that

1 m ~, o 1 m
(7.19) (—211 Vi J_)waxa mz]'ﬂxjwjaj_)SXW’ ( 1) j1XJW/T/_)waw

1 m _, 1 m
_Z =1 JW/XJ_>VXWX’ ;Z -1 JWJaJ_)waa’ Zz -1 JWJTI—)VXWT’

where a; and 7 are defined in (7.9); S, and V| are mxm symmetric, finite, positive definite matrices;

and S SV

WO ) T XWT XW

o and Vo are finite vx1 wvectors of fixed real numbers. Then, B, \n oy 5

asymptotically normal with asymptotic mean B, p, and asymptotic variance:

(7.20)  AsyVary(f ye L Stw, Séw S
. YV AVp\ Peus, mr,mP.w Emr (Wj)2 mp  m(-p)  m
!S S ,S
_9 ¥Owa _, 2(1-2p) Y n xwx d ,
mp(1=p) mp(1- p) mp(1- p)

where y=V_ V__

The first part of the right-hand side in (7.20) is the variance estimator under the FP model without
covariates, so the remaining terms represent precision gains (or losses in rare cases) from adding

covariates.

A direct (conservative) approach for estimating the components of (7.20) is as follows:

(7.21)  AspVar, (B )= S7iy + Scw _1 (STW _SCW)Z
. 3% R\ clus, MR,FP.W mep w(zjm(l_p) m 1/_1/T WC
_2 _2Y waa ( _ p) 'Y war + waxy
wmp(1-p) wmp(1-p)  wmp(-p)’

where the covariance matrixes are estimated using sample moments:

N N A 1 m =, =~
(721a) waa = pHTW +(1_p)HCW’ war = HTW _HCW’ wax = —ijl XjWJZ'Xjﬁ

m—1
nA oA A 1 &

7= VitV Vs = D K03 Vi = p¥iy + (1= p) ¥y

In this expression, Hyy, Hey, Waw, and Wy are vxl vectors of weighted sample covariances

between x; and ¥, for the treatment and control groups, respectively:
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1 &

iy (0= 5 30 W5 =T )0, )
Hmm:@j%;agmmwiwmwim
%Mmjg%;gw@f%M@ﬁwx
75 PN — S E S

(m—D{1-p) £

where the denominators could also use (m —1—v) rather than (m—1).

This estimation approach becomes more cumbersome for the subgroup analysis and the blocked,
clustered design (Design 4) discussed in the next chapter. Thus, similar to Designs 1 and 2, RCT-

YES instead estimates (7.20) using weighted regression residuals:

MSEy, , MSE., 1 JMSEy,,  MSE,

(7.22) AspVary (ﬁAclus,MR,FP,W) = ),

wimp  wem(l—p) m- W, W,
where
1 my 5, A A ~ . 5
MSE, = (mT)p—lj;il w; (y_/ —fy—(1- p)ﬂclus,MR,FP,W - ij) and
1 s — 3 ) ~ A
MSE ¢y, = Z sz' (J’_/ B+ pﬂclus,MR,FP,W - XJ'Y)2

(m-v)(1-p)-1 JT;=0

are regression mean square errors for the treatment and control groups, respectively; /),
Bes.am.row » a0d § are parameter estimates from a weighted regression of ¥, on z; =[17, X;]; and

other terms are defined above.

RCT-YES conducts hypothesis tests for the multiple regression estimator using ttests with

(m; + m, —v—2) degrees of freedom, where V is the number of baseline covariates.

The regression models can also include §j ~by~fj interaction terms. Using the methods discussed
for Lemmas 5.3a and 5.4a n Chapter le, this approach can be shown to yield an asymptotically
efficient variance estimator that sums three terms: (S7, —2Y'S.y. +7'S..¥)/Womp for the

xwYp

treatment group, where S |, = limz’;;1 i;wjz (?j (1)—?”, (1))/(m—1), and parallel expressions for
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the control group and heterogeneity (7 ) terms. This variance can be estimated using (7.22) where
the model includes the interactions. Precision gains from the interactions, however, are likely to be
small in practice and could be offset by degrees of freedom losses. The interactions also complicate
the analyses for blocked designs and subgroups. Thus, RCT-YES includes non-interacted baseline

covariates only, which will likely capture most of the precision gains from regression adjustment.

Subgroup analysis

To obtain regression-adjusted estimators for the subgroup analysis, RCT-YES stacks schoollevel

averages for each subgroup and estimates the following regression model that is based on the relation

)_}j - z;:1 ng)_/jg :

(7.23) ¥,=> B,G,T,+>.6,G,, +n;,
g=1 g=1

~ s s . .
where T,, =T, - p,, 7, :zg:1 G, (a;+t,T,) is the error term, and p, is observed subgroup
sampling rate to the treatment group. In this model, B, = B, , sz rpw is the ATE parameter for

subgroup g .

If baseline covariates are added to (7.23), it can be shown using the methods from Lemmas 5.5 and

7.1 that the weighted multiple regression estimator for f, is consistent and asymptotically normal.

RCT-YES uses the following new asymptotic variance estimator for ﬁ =

MSEry  — MSEqy 1 JMSE;yy  (MSEcy,

(7.24) AsyVar, (ﬂAg)Z — — — ), where
WM, D, We, M, (l—pg) m Wr, Weg
1 & — A A =~
MSE7y, = Wy (Ve = By —(1=p) B, =X, 1),
TgW (mg —ng)Pg -1 j:ng:ZLszl g\ jg 0 g/Fg ig
1 & 2, — A A = A\2
MSECgW = Z ng(ng_ﬂo-l_pglgg_xjg’Y) )

(mg - ng )(1 - pg) - 1 J:Gje=1T;=0
p, =(mg, /m,),and q, =(m,/m) is the proportion of all schools containing subgroup g .

RCT-YES conducts hypothesis testing for subgroup analyses using ttests with (m;, +m, —vq, —2)

g
degrees of freedom. To test the null hypothesis of no differences in estimated treatment effects across

subgroup levels, RCT-YES applies the chi-squared test in (5.35) using the regression-adjusted impact
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and variance estimators from above and regression-adjusted versions of the covariances in (7.16a)

(which can be excluded if the NO_COV_SG option is set to 1).

c. SP model without baseline covariates

The SP model under the clustered design assumes that school-level and/or studentlevel potential
outcomes are random draws from super-population distributions. As with the blocked design, RCT-
YES can estimate several SP model parameters for Design 3. First, by default, RCT-YES estimates the
PATE parameter that assumes simple random sampling of both schools and students within schools.
HIM methods that are often used in education research to analyze experimental data focus on the
PATE parameter. Second, RCT-YES can estimate the CATE parameter (random sampling of
students, but not schools). Finally, the program can estimate the UATE parameter (random
sampling of schools, but not students). The CATE and UATE parameters can be estimated using
the CATE_UATE program input option.

An important issue for SP clustered designs is how RCT-YES users should treat clustering (nesting)
below the unit of random assignment. To explain this issue, it is helpful to consider an example of
a clustered design where schools are randomized to a treatment or control group and where
classrooms within the study schools are assumed to be representative of a broader set of classrooms
(or are actually randomly sampled, for example, to reduce data collection costs). In this design,
students are nested within classroom clusters, which are in turn nested within school clusters. In
this case, RCT-YES users should account for clustering effects due to school-level randomization (to
account for the experimental design), which will also capture clustering effects due to the lower-level
classroom sampling. Stated differently, for this design, school identifiers should be specified in the
CLUSTER_ID input variable, not classroom identifiers.

For the statistical analysis of SP clustered designs, we assume infinite sample universes so that finite
population corrections do not apply (this approach yields conservative variance estimators). In
practice, however, users may want to assume random sampling of clusters and students from finite

sample universes. Accordingly, RCT-YES allows weights to differ across clusters.

For clustered designs, the UATE parameter is the simplest to analyze because it is similar to the FP
parameter for Design 3 except that schools are assumed to be a random sample from the super-

population of schools (§) rather than being fixed for the study. The UATE parameter can be
expressed as Eg(f.,, rp), which averages the FP parameter over all possible samples of 7 schools
from §. Thus, similar estimation methods can be used for the UATE and FP parameters, the only
differences being the choice of cluster weights and the exclusion of the FP heterogeneity term from

the variance estimators (or the multiplication of this term by the sampling proportion if the sample

universe of schools is assumed to be finite).
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The situation is more complex for the PATE and CATE parameters. In what follows, we first discuss
the PATE parameter in detail and then discuss the CATE parameter as a special case of the PATE

parameter.

The PATE parameter for the clustered design is
(7.25) :Bclus,PATE =L (Yy M- Yij 0)),

which is the expected value of the treatment effect in the super-population of students (/) within
§. To examine this parameter further, let 4, = E,(¥; (1)) and ., = E,(¥;(0)) be mean potential
outcomes in [ for school j, and let O‘é =Var,(¥,(1)) and O'éj =Var,(Y;(0)) be corresponding

super-population variances. We can then express the (asymptotic) PATE parameter as

E; (Wj[:uTj _;ch])
Eg(w;) '

(7.26) ﬂclus,PATE =

In RCT-YES, the default is w; =1, but other weighting schemes could be more appropriate for the

PATE parameter.

As discussed next, the PATE parameter for the clustered design can be estimated consistently using
a simple differences-in-means approach, with an asymptotic variance estimator that is similar to that

for the UATE parameter despite the assumed multilevel sampling of schools and students.

Full sample analysis for the PATE parameter

Consider the simple differences-in-means estimator for the PATE parameter:

X ZWJ = ¥g)
(7.27) :Bc/us,PATE = m
Z w;

J=1

To show that this estimator is consistent, we use the law of iterated expectations, where we

sequentially average over [, the randomization distribution (R), and S':

ERs[WjY}ﬂTj] _ ERS[Wj (1 - Tj)/ucj]
ERs[Y}Wj] ERS[(I_TJ)WJ]

_ Eg[w; (1 _,UCJ')] _

ES (WJ) clus ,PATE *

(7.28) ﬁPATE,SP L
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The following new lemma presents the asymptotic properties of ,36 The proof is provided in

Appendix A.

lus ,PATE *

A

Lemma 7.3. Let 3

Ci

jus.pATE e the weighted simple differencesin-means estimator in (7.27) for the PATE

A

parameter in (7.26). Then, as M approaches infinity, ﬂdm’PATE is asymptotically normal with asymptotic

mean B pirp and asymptotic variance:

1
mpEg (Wj)2

(7.29)  AsyVarg (Bclus,PATE) = ES (F%W) + " ES (réW) )

1
(1_p)ES(W]’)2
” 1 & _
where T2, =S w2 (g — g2y, > and Doy =——3 Wity = Fley ).
m 1].:1 m 1]:1

A consistent estimator for the variance in (7.29) is

2 2
A . S S
(7.30) AsyVaryg (ﬂclus,PATE) =4 — cr )
wrmp  Wem(l1— p)

where S%W and SéW were defined in (7.12).

Note that the first-order variance approximation in (7.29) does not contain terms reflecting the
variances of student potential outcomes within schools. As shown in the proof in Appendix A, these

within-school variance terms vanish from the asymptotic variance expression because they are of

1/2

order o,(1/m) rather than o,(1/m"”) as is the case for the between-school variance terms. The

within-school variance terms, however, would enter the variance formula with finite student
populations (see Cochran, 1977, pages 300-306).

RCT-YES conducts hypothesis testing for the PATE parameter using ttests with (m, +m,—2)

degrees of freedom.

Subgroup analysis for the PATE parameter

A similar estimation approach as for the full sample analysis can be used to estimate the PATE
parameter for the subgroup analysis: the simple differences-in-means estimator in (7.27) and the
variance estimator in (7.30) can be applied separately for each subgroup. Tests of differences in
treatment effects across subgroups can be obtained using the chi-squared tests in (5.35) and the

covariances in (7.16a).
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The CATE parameter

The CATE parameter is a special case of the PATE parameter where schools are no longer assumed

to be representative of a broader school population, but only of themselves. This parameter can be
m m .
expressed as B carp = (ijl w; (g — ;) / ijl w;), and can be interpreted as the expected

treatment effect for the super-population of students in the study schools.

Similar methods to (7.28) can be used to show that the simple differences-in-means estimator is

consistent for the CATE parameter (where averaging is conducted sequentially over I and R but

not S ). The asymptotic variance of ,‘GCM’C e is shown in (A.42) in Appendix A as part of the proof

for Lemma 7.3. RCT-YES uses the variance estimator in (7.30) for the CATE parameter.

Assessing baseline equivalence

To assess baseline equivalence for all the SP parameters, RCT-YES conducts t-tests using (7.17) and
the joint F-test in (7.17a).

d. SP model with baseline covariates

RCT-YES incorporates baseline covariates for the clustered SP model using a similar approach as for
the clustered FP model. The program estimates a weighted regression model using data averaged to
the cluster level, and uses model residuals to estimate variances. Using this approach, RCT-YES uses
the following variance estimator for the PATE, CATE, and UATE parameters:

MSEy, . MSEg,
mpw;  m(1— p)wg

(7.32)  AspVarg (:Bczus,MR,SP,W) =

A similar approach is used for the subgroup analysis using (7.24), without the FP heterogeneity term.

e. The CACE parameter

The analysis of the complier average causal effect (CACE) parameter is more complex for clustered
RCT designs than nonclustered ones because compliance decisions can be made by cluster-level staff
as well as by individuals within clusters. For example, in the education area, the extent to which
students receive intervention services could depend on compliance decisions made by both school
staff (such as superintendents, principals, and teachers) and students. Similarly, in a health setting,
compliance decisions can be made by hospital staff as well as patients. Under this scenario, there are

16 possible compliance groups rather than 4 as for the non-clustered design.

Schochet and Chiang (2011) discuss the identification of the CACE parameter for multilevel models

that generalizes the SUTVA, monotonicity, and exclusion restriction assumptions discussed for the
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non-clustered design in Chapter 1, Section l. Under these assumptions, Schochet and Chiang show

that the CACE parameter for clustered designs can be consistently estimated using the same general
methods as for Design 1 by dividing the estimated ATEs for the outcomes (/) by the estimated
ATE:s for the service receipt variables ( p., ). Furthermore, the Taylor series approximation in (5.57),

applied to clustered designs, can be used to calculate standard errors of the CACE estimates.

Accordingly, RCT-YES uses (5.57) for standard error estimation where the variance terms are
calculated using the pertinent Design 3 variance formulas for f and p., . To estimate the
covariance term in (5.57), we first define d; to be an observed indicator variable that equals 1 if an

individual received intervention services and O otherwise. The covariance term in (5.57) can then be

estimated as follows using the FP model as an example:

A . A 52 52
(7.33)  AsyCovi(Byus,pps Per) = v_;an; + 2 nj?ly_d 5 where
T C
5 B 1 my , o N _ A~
STW,yd _ngl Wj (ij _ij)(de —de) and
1 iia 2

g = 2Vs = Vi N dys —d,y) -
Scw,yd (M—V)(l—p)—l_j;()wf(y% ywj)( W Wj)

. . - _ nj nl. . . . . . ~
In this expression, d, = Zi:] wd, / Zle w, is the service receipt rate in school j, and Y, and

A

d,, are either variable means for the simple differences-in-means estimator or predicted values from

fitted school-level regression models with baseline covariates (where RCT-YES uses the same
covariates for the service receipt and outcome variable regressions). The same approach is used for

all Design 3 FP and SP models and subgroup analyses.

RCT-YES users can estimate the CACE parameter by specifying the name of the service receipt
variables using the GOT_TREAT input variable. Importantly, these variables must be binary if the
data contain individual-level records (CLUSTER_DATA=1) but must be continuous service receipt
rates with values between 0 and 1 if the data contain cluster-level averages (CLUSTER_DATA=0).

With individual-level data, RCT-YES presents impact findings for the CACE parameter by
calculating (1) the control group mean for compliers, (2) the CACE impact estimate, and (3) the
treatment group mean for compliers calculated as the sum of the control group mean for compliers
and the CACE impact estimate. The control group mean for compliers is calculated using the same
approach discussed in Chapter 51. With cluster-level data, the program uses control group means for

the full sample rather than control group means for compliers which cannot be estimated.
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8. Design 4: The clustered, blocked design

This chapter discusses ATE estimators under the Neyman-Rubin-Holland model for Design 4 where
schools (or other clusters) are randomly assigned to the treatment or control conditions within
blocks (for example, sites). An example of this design is the Evaluation of Mandatory-Random
Student Drug Testing (James-Burdumy et al. 2010), where 36 schools in seven districts were
randomly assigned to a treatment or control group. Students in the treatment schools who
participated in specific extracurricular activities were subject to random in-school drug testing,
whereas students in control schools were not. This evaluation was a clustered, blocked design

because study schools were randomly assigned separately within each school district (block).

The data requirements for Design 4 combine those for Designs 2 and 3. Of particular importance,
for the default FP specification, RCT-YES performs the analysis using only blocks that contain at
least 2 treatment and 2 control schools. Thus, if the sample contains many small blocks, RCT-YES
users might consider using the SP specification or the FP specification with the BLOCK_FE=1

option which both require only 1 treatment and 1 control school per block.

The estimation methods for Design 4 also combine those for Designs 2 and 3. Furthermore, the
methods for moving from Design 3 to Design 4 for the clustered design are similar to those for
moving from Design 1 to Design 2 for the non-clustered design. Thus, we provide much less detail

on the ATE estimators for Design 4 than for the previous designs.

In this chapter, we use the same notation as in previous chapters. The subscript “i” refers to

students, “j” to schools, “b” to blocks, and “g” to subgroups. Thus, for example, ij is the
treatment status indicator variable for school j in block b and S, is an indicator variable signifying
whether a student is in block b. The studentlevel weight is W, the schoollevel weight is

my,

W, = Z"j W, , and the block-level weight is w, = Z

, W .
iSy=1 b JjiSp=1" P

In what follows, we first discuss estimators for the FP model and then for the SP model.

a. FP model without baseline covariates

Full sample analysis. The ATE parameter for the clustered, blocked design is

h
Z Wbﬂclus,b,FP 1

mb _ _
8.1 ﬁclus,blocked,FP == h , where ﬂclus,b,FP - mb—z Wib (Y]b (1) B ij (0)) ’
PR 2w
= =
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and 17].17 = (Z[n’b Y,,(1)/n;) and (ij 0)= Z”ﬂ' Y;,(0)/n;,) are school-level mean potential

=1"ib i=1 " b
outcomes in the treatment and control conditions, respectively. This ATE parameter is a weighted
average of the block-specific ATE parameters, which, in turn, are weighted averages of school-specific
ATE parameters within the blocks.

Similar to Design 3, the default weights in RCT-YES for Design 4 are w,, =(1/n,), w;, =1, and

w, =my,, so that schools are weighted equally within blocks and blocks are weighted by their
numbers of study schools. Another weighting scheme for the FP model is to weight blocks equally

(Wyb

=(1/(n,m,)), w;, =(1/m,),and w, =1)which can be implemented in RCT-YES by including
a weight variable in the input data file. Another option is to weight students equally (w,, =1,

w,, =n,,and w, =n,).

In a blocked design, random assignment is conducted separately within each block. Thus, ATE
estimators discussed in Chapter 7 for Design 3 apply for each block separately. Accordingly, within

each block, the simple differences-in-means estimator in (7.4), B.srmp = Vrow = Yepw) is a

consistent estimator for the block-specific ATE parameter in (7.8). Accordingly, a consistent

estimator for the pooled ATE estimator for Design 4 is

h ~
Z Wb clus,b,FP
_ b=l

(82) ﬂclus,blocked,FP - h
2 W
b=1

Because the samples across blocks are independent, a consistent variance estimator for

Iy

ﬂ clus ,blocked ,FP is

h A
A Z WgASj} VCII’R (ﬂclus,b,FP)
(83) ASy VarR (ﬁclus,blocked,FP) =t h
Q_w,)
b=l

M

where AsyVar, (ﬁclus’b’ ) can be calculated using (7.12) and (7.13) that is applied to each block

separately. Furthermore, £

C

s plocked.p 1 asymptotically normal as the number of schools per block

goes to infinity (which may not be realistic in some settings), because it is a weighted sum of

independent, asymptotically normal random variables. Thus, t-tests can be used for hypothesis

testing with (ZZ:I (my, +mg,)—2h) degrees of freedom, where £ is the number of blocks.

112



8. Design 4: Clustered, blocked

If the BLOCK_FE=1 option is specified, RCT-YES estimates the following regression model that

includes block indicator variables but excludes block-by-treatment status interaction terms:
h h
®4) ¥y, =a(T; —;Sjbpb)+bz;5ijb +e,.

Using methods from Chapter 6 for Design 2, the weighted least square estimator for @, in (8.4) can

be shown to be a weighted average of block-specific impacts with weights[(1/m,,w, )+ (1/m.,w,)]",
where w, = (z;nil w,, /m,) is the average school-level weight in block &. This approach is similar

to weighting blocks by the inverses of their variances. In general, this estimator is biased for the FP
ATE parameter. Nonetheless, it could be a parsimonious specification for models with small

numbers of schools per block.

Using results from Chapter 6 for Design 2, @, can be shown to be asymptotically normal with

asymptotic variance that can be estimated as follows:

Y

b=1 j=1
m(m—h—1)

m,

W?b(ij _pb)z()_’jb —ay (T, _pb)_gb)z

(8.5) AsyVary(a,) = -
[bz—; W, P, (I- by )(]b ]2

where ¢, =(m, /m) is the proportion of all schools in block b. For this specification, RCT-YES

h
conducts hypothesis testing using t-tests with (Z o (1, +me, ) —h—1) degrees of freedom.

To assess baseline equivalence, if BLOCK_FE=0, RCT-YES conducts t-tests using (7.17) where the
treatment-control covariate differences and pooled variances are calculated for each block separately
and weighted to yield overall values. If BLOCK_FE=1, the program uses the variance estimator in
(8.5). The joint test of baseline equivalence across all covariates is conducted using Hotelling’s T-

squared statistic in (7.17a) for Design 3.

Subgroup analysis. RCT-YES estimates impacts for subgroups using similar methods as for the full
sample. By default, the program calculates the ATE and variance estimators in (7.15) and (7.16)
separately for each subgroup and block, and then averages the block-specific estimators to obtain
pooled subgroup estimators. If the BLOCK_FE=1 option is used for the subgroup analysis, RCT-
YES estimates the following regression model using OLS:
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N - h s
(8‘6) J_;j = ZﬂgGJ’gTjg + ZZngngSjb +77j ’
g=1

b=1 g=1

h
where T, = (TJ _;Sjb p gb) and 77, is the error term. The variance estimator for f, is:

h A )
1 ; G 1W§gb(7}b_pgb)2(ngb_ﬂb(y}b—Pgb)—é‘gb)z
=1 j:G;,=

m,(m, —h—1)

(8.7) AspVary(B,) = .
[Z wgbpgb (1 - pgb)q;b ]2
b=1

— Mg . o . .
where W, = (Zj:Gjb:l Wi/ Myy) Doy = (M, /mgb), and g, =(my, /'m,). For this estimator,

h
the degrees of freedom for hypothesis testing is (Z yy Mgy + Mg ) —h—1).

To conduct statistical chi-squared tests of differences in estimated impacts across subgroups, RCT-
YES uses the same approach as for Design 3 for both BLOCK_FE = 0 and 1. This approach ignores
the blocks to avoid unstable test statistics that could result if the sample contains small blocks. The

same approach is followed for the FP models that include baseline covariates.

b. FP model with baseline covariates

Full sample analysis. To estimate regression estimators for Design 4, by default, RCT-YES estimates

the following regression model using weighted least squares, where centered baseline covariates,

X;p = (Xj, —Xjpw), are included as explanatory variables in the model with associated parameter

vector Y:

h - h
(88) J7j = ;ﬂclus,b,FPSijjb +;5ijb +uj'

Using results and methods from previous chapters (see, for example, Lemmas 6.1 and 7.2), the

weighted least squares estimator, f3

s s mrrp o €an be shown to be consistent and asymptotically

normal for each block, and the asymptotic variance of £, , 1z zp can be estimated as follows:

- A MSE MSE, 1 MSE MSE,
(8.9)  AsyVary (B pvr.rr) == D4 — LI — \/ — \/ p— L
Wrymp,q, Weym(1=p,)q, mgq, Wr Wb
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where
_ 1 < 2 = Q A = 552
MSE = (m—v)p,q, —1 _]':Sjb—zl,Tj—l Wi (yjb -B—-1-p, )ﬂclus,b,MR,FP - ijY) )
1 < 2 — h h = A2
MSEy,, = Z Wi, (yjb = Bo + PoBrtus o arrr — ijY) )

(m—=v)(1-p,)g, -1 S p=1.T;=0

and q, =(m, /m).

The block-specific ATE and variance estimators can then be inserted into (8.2) and (8.3) to obtain
pooled estimators across all blocks. RCT-YES conducts hypothesis testing for the pooled estimator

using t-tests with (ZZ:I (my, +mg,)—v—2h) degrees of freedom.

If the BLOCK_FE=1 option is specified, RCT-YES estimates the regression model in (8.4) where the
explanatory variables include the centered baseline covariates. The program uses the following

variance estimator for the resulting ATE estimator, &,

I & & ~ A
1 Z ' sz'b(ij _pb)z(yjb — (T —py)—9, _ij'Y)2
(8.10) AspVary (&, ) = =
’ m(m—h—-v—1)

7
[bz_: _lfpb (I-py)g, ]2

The degrees of freedom for hypothesis testing is (Z:Z:1 (my, +mg)—v-h-1).

Subgroup analysis. For subgroup analyses with covariates, RCT-YES estimates the following model

where the centered covariates are included as additional model regressors:

h s _ h s
B1) 7,22 BuGiSuTin +2.2.0,5G S, +10;,

b=1 g=1 b=1 g=1

where T

oo =Ly = Pg) and 77, is the error term. In this formulation, B,, = B, o sam.rp 15 the

ATE parameter for subgroup £ in block b . The variance estimator for ,ng’ k18

A MSE,,, MSE MSE MSE
(8.12) AsPVary(Byy ) = g4 W ] (J R e o

> —
Tgb mT gb WC 'gb ngb mgb Wr, ‘gb We 'gh
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where
MSETng = ! 3 sz‘gb (.)_/jgb :ng ur(1= pgb) 5 ngV)2
(M=), Py =1 6,1 5517,
1 Mep _ A A =~ A
MSE = Z Wiy (Vjep T BepamP gy = O ~ ngb,y)Z ’

CagbW
& (m— V)qb (1- P )ng -1 G g =1,S 5 =1,T;,=0

— _ Mrgp Zngb
Wreb _(Zj:Gjb:l;ij =1 ng/ngb) and WCgb ( J:Gjp=1:T5=0 ng/ngb)

The regression-adjusted block-specific impact estimates and variances can then be weighted to yield

overall ATE estimates for each subgroup. RCT-YES conducts hypothesis testing for the pooled
subgroup estimator using t-tests with (ZZ=1 (Mg, + My ) —vq, —2h) degrees of freedom, where

q, =(m,/m).

Finally, if the BLOCK_FE=1 option is specified for the subgroup analysis with covariates, RCT-YES

estimates (8.6) using the centered covariates and calculates the following variance estimator:

h Mep
1 z Z W/gl b P )2 (.)_/jgb - lgg,MR (T;/, - pgb) - 5gb - ijgl,’?)z
~ o b=1 jg~
(8.13) AspVar, (B, \u) = Zic - ,
my(m, —h—v—1) _
27,0, (= py)a,T
b=1

h
For this estimator, the degrees of freedom for hypothesis testing is (Zb=l (Mg, +mey ) —vq, —h=1).

c. SP model without baseline covariates

Similar to Designs 2 and 3, there are several ATE parameters for the SP specification for Design 4
that depend on sampling assumptions regarding study blocks, schools, and students from broader
populations. To keep the number of possibilities manageable, we typically invoke the same sampling

assumptions for schools and students.

By default, RCT-YES estimates the PATE parameter that assumes random sampling at each level. If
the CATE_UATE option is set to 1, RCT-YES estimates the CATE parameter that assumes fixed
blocks but a random sample of schools and students within blocks. If the CATE_UATE option is
set to 2, RCT-YES estimates the UATE parameter that assumes a random sample of blocks but fixed
study schools and students within blocks.
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RCT-YES uses the same methods for estimating impacts for all three SP parameters by: (1) estimating
weighted simple differences-in-means estimators in each block and (2) calculating a weighted average
of the block-specific estimators to obtain pooled estimators. Variance estimation, however, differs
somewhat for the three SP parameters. In what follows, we first discuss estimators for the CATE
parameter and then for the PATE and UATE parameters.

The CATE parameter for Design 4 is

b Eg(wy L, — 1 !
(814) ﬂclus,blocked,CATE Z L Cjb /Z Wb ’
b=1 E ( b) b=1

where 1, = E,(Y;,(1)) and p, = E,(Y,(0)) are mean potential outcomes in the student super-

population within schools. This parameter is a weighted average of the PATE parameter from Design
3 across the fixed blocks. Accordingly, we could use the variance estimator in (7.30) for the Design
3 PATE parameter that is applied separately to each block, and these estimators could then be
averaged to calculate the pooled variance estimator using (8.3). RCT-YES, however, instead uses the
simpler variance estimator for the FP model for Design 4 (excluding the FP heterogeneity terms)
under the assumption that students in the sample are fixed for the study. This same approach is

used for the subgroup analysis and the baseline equivalency analysis.

If the BLOCK_FE=1 option is specified for the CATE parameter, RCT-YES estimates the model in
(8.4) and uses the variance estimator in (8.5) (and similarly for the baseline equivalency analysis).
For both the BLOCK_FE=0 and 1 specifications, RCT-YES conducts the joint test of baseline

equivalency using the covariances in (7.17a) for Design 3.

The PATE parameter for Design 4 can be obtained from the CATE parameter in (8.14) by averaging
over the sampling of blocks: B, siocted.pare = £ (Betus piocked.care ) - The asymptotic variance of the
simple weighted differences-in-means estimator for the PATE parameter (as the number of blocks

gets large) can be obtained using similar methods as for Lemma 6.2 (the PATE parameter for Design
2) and Lemma 7.3 (the PATE parameter for Design 3) and can be expressed as follows:

n E [w, =l w. e
(8.15)  AsyVary, (ﬂclux,blacked,PATE) =Var [Wb [ S[ L (IL(IT/b )Iucjb )] :|] + EB [WZ VCZI”S |: Jjb (:uT,(b /;Cjb) ]]
jb S jb

Wi & sz'b[(l_pb)a;jb +pbo-é/b]
+EB[ 2 ES ]9
mbpb(l_pb)ES(ij)

j=1 n,

where O‘éb =Var, (¥, (1)) and O‘éjb =Var, (Y, (0)) are variances of potential outcomes from /. In

this expression, the first term is the variance of ATEs across blocks, the second term is the variance
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of ATEs across schools within blocks, and the third term is the variance of ATEs within schools.

This variance structure aligns with the three-stage sampling assumption for the PATE parameter.

A consistent estimator for the asymptotic variance in (8.15) is

1

(8.16) AsyVar, IRSB (ﬁAclus,blocked,PATE) = (h——

h
0 — N 2
-2 Z(Wb clus,b,PATE W clus,blocked,PATE) :
l)hW b=1

This variance estimator represents the variation of estimated ATEs across blocks, and can be proved
using the same methods as for Lemma 6.2. It is interesting that this is the same variance estimator
as for the PATE parameter for Design 2 with student-level random assignment. This occurs because
the assumed primary sampling unit for the PATE parameter is the block for both the clustered and
non-clustered designs, and the variance across blocks captures the variances of lower-level sampling
units. RCT-YES conducts hypothesis testing for this specification using t-tests with (2 —1) degrees of
freedom. The program also uses (8.16) for the baseline equivalency analysis and a version of (6.25a)
adapted to Design 4 for the joint test. Similarly, the program uses versions of (8.16) for the subgroup

analysis and (6.25b) to calculate covariances for the subgroup interaction tests in (5.35).

The UATE parameter for Design 4 can be obtained from the FP parameter in (8.1) by averaging
over the sampling of blocks: B« siocted.vare = Es(Betus.piockea.rp)- Using (8.15), the asymptotic

variance of the simple weighted differences-in-means estimator for the UATE parameter is

Es [ij (ij (1)- ij 0))]

Eg (ij) J

(8.17) Varg[w,

RCT-YES estimates this variance using the PATE variance estimator in (8.16).

d. SP model with baseline covariates

To estimate regression estimators for the SP model for Design 4, RCT-YES adapts the regression
estimators from previous models. For the CATE parameter in (8.14), the program uses the same
approach as for the FP model for Design 4 (see (8.8) and (8.9)). For the PATE and UATE parameters,
RCT-YES uses the estimation approach discussed in Section 6d for the PATE parameter for Design
2 (see (6.27) to (6.30)).

e. Matched pair designs

For Design 4, matched pair designs occur if similar schools are paired using observable baseline
measures and one school in a pair is then randomly assigned to the treatment group and the other

to the control group. The pairing is done separately within each block (for example, each school
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district). These designs are common for clustered designs in education research when there are small
numbers of schools per block, because they can help avoid the possibility of a “bad draw” where the
treatment and control groups differ along important dimensions due to chance. In clustered designs,
a critical matching variable is the cluster size to help minimize bias of the impact estimates (Imai,

King, and Nall, 2009; Imbens, 2011).

The differences-in-means estimators for Design 4 produce consistent estimates for matched pair
designs. However, as discussed in Chapter 6, Section e, without further assumptions, variance
estimators for the FP model are not identifiable because each pair contains only 1 treatment and 1
control group school. To address this issue, RCT-YES estimates variances for the matched pair design

using the SP variance estimator for the Design 4 PATE parameter (see Section 8d above).

f. The CACE parameter

For Design 4, RCT-YES estimates the CACE parameter (if requested) using the same general
methods as for Design 3. The program obtains CACE estimates by dividing the estimated ATEs for
the outcomes ( ,8 ) by the estimated ATEs for the service receipt variables ( p., ). To calculate

standard errors of the CACE estimates, the program uses (5.57) where the variance terms are

calculated using the pertinent Design 4 variance formulas for # and p,, . The covariance term in

(5.57) for the default FP model with BLOCK_FE=0 is calculated using

h ~
. z WZASJA/COVR (ﬁclus,b,FP ) pb,CL )
(8.18) AsyCov, (ﬂclus,blocked,FP s Do) = o=l 7
2
(Z w,)
=

)

where Asj/CovR(ﬂAdus,b’FP, Dycy) s calculated using (7.33) applied to each block, p, ., is the

estimated ATE on service receipt in the block, and similarly for the CATE model. If BLOCK_FE=1
for the FP or CATE models, RCT-YES ignores the covariance terms in the calculations. For the PATE
and UATE models, RCT-YES calculates the covariance terms using

(8.19) Asy Covipgp (ﬁclus,blocked,PA 52 Per)

1

h
P —— Z(Wb ctus b, PATE ~ WPetus piocked paTE )Wy Py.ci = WPy )-
(h=Dhw” 7=

Finally, to assess differences in treatment effects across subgroups for the PATE and UATE models,
RCT-YES ignores the final term in (5.57) for the chi-squared tests if NO_COV_SG = 0, but includes
this term if NO_COV_SG = 1.
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9. Simulation analysis

This chapter presents results from a simulation analysis to examine the statistical performance of the
design-based estimator and other commonly-used RCT estimators that all rely on asymptotic
approximations. The simulations are conducted for a clustered RCT design rather than a non-
clustered design because finite sample biases are likely to be more prevalent for clustered designs
where the variance estimators are driven primarily by the number of clusters rather than the number
of individuals. We focus on three estimators: (1) a design-based estimator that is estimated using the
methods discussed in Chapters 7 and 8 and the variance formulas in (7.32) and (8.16); (2) an HLM
maximum likelihood estimator that is estimated using SAS Proc Mixed with studentlevel data, and
(3) an OLS robust cluster standard error (RCSE) “sandwich” estimator that is estimated using SAS
Proc Genmod with studentlevel data (see Huber, 1967; White, 1980, Liang and Zeger, 1986; and
Diggle, Liang, and Zeger, 1994). For the RCSE estimator, we do not apply the small sample bias

corrections found in the literature.

Our focus is on a clustered design where schools are randomized (Design 3). However, we also
conduct simulations for the SP estimator where schools are randomized separately within randomly
sampled districts (Design 4), because standard errors for this estimator have a different structure

than the other standard error estimators considered in this report.

a. Simulation methods

Methods for Design 3. For Design 3, we conducted the simulations by randomizing schools to a

single treatment or control condition and generating student test score outcome data (Posttest;) .
We estimated models both including and excluding pretest scores (Pretest;)as a covariate. The

underlying pretest-posttest RCT model used to generate the simulated data for student i in school

J was as follows:

(9.1a) Posttest; = BT +yPretest, +(u; +0.T; +e,)
(9.10)  Pretest, =100+ (u,; +¢,;),

where f3 is the ATE parameter, u#; are independent and identically distributed (iid) random school-
level errors in the posttest model with mean O and variance 0'5 ; Uy, are iid (0, O'gu) school-level
errors in the pretest model; €, are iid (0, o,) random errors that capture the heterogeneity of
treatment effects across schools; e, are iid (0, o) studentlevel errors in the posttest model; €y; are

iid (0, o;,) studentlevel errors in the pretest model; and errors across levels and equations are
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assumed to be independent. Because of &, the variances of posttest scores are larger for the

treatment group than control group.

For the simulations, we made the following real-world model parameter assumptions: (1) 60 percent

of schools are randomized to the treatment group and 40 percent to the control group (p =.60);
(2) the standard deviations of pretest and posttest scores (O,,.,) are each about 15; (3) the ATE
parameter is .20 standard deviations so that f =3; (4) the squared correlation () between pretest
and posttest scores is .5 at both the school and student levels, which implies that y = J5=.71;05)
the intraclass correlation, ICC =" /(o +07), is .10 for posttest scores (where we ignore o) and
similarly for pretest scores; and (6) o, = fo_ for the treatment group, where f =.10. Using these

assumptions, we calculated the model error variances using the following relations:

o*ozu = oﬁwmlCC, age =0'§u(1—ICC)/ICC, of = of(l—ICC)/ICC, 0'92 = fa; , and

92) o= ICC[oy,,..(1-p°)— 2 p(1—p)]
' “ 1+(fp)ICC '

Finally, to generate unbalanced designs, student sample sizes were allowed to vary across schools and
to be positively correlated with posttest scores. Specifically, we drew the student sample size from a
Uniform(10,40) distribution if u; >0 and from a Uniform(5,20) distribution if #, <0 (rounded to

the nearest integer), yielding a correlation coefficient of about .15-.20 between school size and

student posttest scores.

Separate simulations, with 10,000 replications each, were conducted assuming total samples of 8,
12, 16, 20, 40, and 60 schools (statistical precision in clustered designs is usually primarily driven by
the number of clusters rather than the number of individuals per cluster). Separate simulations were

conducted assuming that u i Hj, e, Uy, and €y had (1) normal distributions to align with the
HLM assumptions; (2) bimodal normal distributions for the schoollevel errors where

u,~N (0,,0./2)with probability .5 and u,~N (-0,,0./2)with probability .5 and normal
distributions for the student-level errors with e, ~ N (0, o’ /2) (and similarly for the pretest model);

and (3) mean-zero chi-squared distributions for all errors. We specified bimodal and chi-squared
distributions to allow for skewness and some misspecification in the HLM framework. In addition,
to allow for additional model misspecification, we conducted simulations where the regression
model was estimated controlling for the natural logarithm of the pretest scores rather than the linear

pretest scores that were used to generate the data.

To examine the statistical properties of the considered estimators, we calculated finite sample biases

of the estimated ATEs and their standard errors (we do not consider statistical power). For this
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analysis, we stored the 10,000 replicated values of ﬁA and their estimated standard errors for each
specification. To examine biases in the estimated ATEs, we calculated average values of the 10,000
/3 estimates and compared them to the true value of B =3. To examine biases in the estimated
standard errors, we compared average empirical values of the standard errors produced by the

estimators to their “true” sampling variability as measured by the standard deviations of the S

estimates. Finally, we conducted simulations under the null hypothesis of no average treatment effect

(f=0) and calculated the proportion of tstatistics that were statistically significant across the

10,000 replications to examine nominal Type 1 error levels (using a 5 percent significance level and
a two-tailed test).

We conducted simulations for models that included and excluded the pretest scores. For the

simulations without the pretests, we generated data using (9.1a) by setting » = 0 and using the same

methods described above to obtain values for the other model parameters.

Methods for Design 4. The design-based standard error estimator for the Design 4 SP model has a

different structure than the standard error estimators for the other designs considered in this report.
Thus, to assess the performance of this estimator, we conducted simulations where data were
generated assuming the randomization of schools within randomly sampled study sites. The
simulations were conducted using the following specifications: (1) 4, 8, 12, 16, 20, or 40 study sites;
(2) the number of schools per site are drawn from a Uniform(4,6) distribution if 77, >0 and from a

Uniform(5,8) distribution if 77, <0 (rounded to the nearest integer), where 77, are site-level errors

defined below; (3) half the schools are randomized to the treatment group; (4) student sample sizes
within study schools are generated using the same approach as described above for Design 3; and (5)
model errors are assumed to have normal, bimodal, and mean-zero chi-squared distributions as

described above for Design 3. Standard errors for the simulations were calculated using (8.16) and

(6.28).

We used the following underlying Design 4 model to generate the simulated data for school j in

site b that builds on the model for Design 3:

(9.3a) Posttest;, = BT, +yPretest, + (17, + 4T, +u;, +0,T, +€,)
(9.3b)  Pretest;, =100+ (17,, +y ;, + &),

e 2 . . e
where 7, are iid (0, 0,) sitelevel errors in the posttest model, 4, are iid (0, 07;) errors that represent
o e . . * . — n
the variation in ATEs across sites, u;, are iid (0, ,.) schoollevel errors, €, =% "¢, /n, are
. _ izt G 1 1

average studentlevel errors, @, are defined as above for the Design 3 simulation model, and

similarly for the errors in the pretest model. In this specification, the key variance component for
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the design-based estimator is of . For the simulations, values for B, p*,and ¥ were set to the same
values as for the Model 3 simulations. Letting 8, =17, + u;,, , we obtained values for &} using (9.2)
where we replaced o with o} = (7; +o.. and ICC =.10 with ICC,; =0} (o} +07)=.20. We
calculated the other variance components using the relations o’ =o,(1-ICC,)/ICC,,
(75 =.500;, 0, = .50(75 O =0, — (7;, and o, =.100... The same approach was used to calculate

the pretest variances in (9.3b).

For Design 4, we conducted simulations for models that included and excluded the pretest scores.

For the simulations without the pretests, we generated data using (9.3a) by setting y =0 and using

the same procedures as described above for the Design 4 model with the pretests to obtain values

for the other model parameters.

b. Simulation results

Tables 5 to 8 display simulation results for Design 3 for the models with and without the pretest
scores. The results indicate that biases of the estimated ATEs for the design-based and HLM
estimators are small even if the sample contains only 8 schools, but that the RCSE estimator is
slightly biased upwards in small samples (Table 5). To assess biases for the standard errors, Tables 6
and 7 display “true” standard errors for the considered estimators in Columns 2 to 4 and empirical

standard errors in Columns 5 to 7; Table 8 displays associated nominal Type 1 error rates.
The two main findings from Tables 6 to 8 can be summarized as follows:

o If the number of schools is at least 12, the true standard errors of the three estimators are
similar (Tables 6 and 7). With only 8 schools, the true standard errors of the design-based
estimator for the model with the pretests are slightly larger than for the HLM and RCSE
estimators with normally distributed disturbances, but not if the model disturbances have
bimodal normal distributions and not if the model excludes the pretests. For all
specifications, however, differences in the true precision of the estimators disappear if the

sample contains at least 12 schools.

o If the number of schools is at least 12, the empirical standard errors of the three estimators
align with their true standard errors. With smaller samples, the empirical standard errors
of the design-based estimator are downwardly biased (Tables 6 and 7) and Type 1 errors are
inflated (Table 8). However, these biases become negligible with more clusters. The
downward biases are more pronounced for the RCSE estimator, even with large cluster
samples (a result also found in Angrist and Pischke, 2009 and Green and Vavreck, 2008).
Importantly, we find that the design-based and RCSE findings are very similar if the design-
based approach weights schools by their student sample sizes rather than equally (not shown).

The HLM estimator tends to perform well across the considered specifications.
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Table 9 displays simulation results for the design-based estimator for the Design 4 SP model without
pretests, and Table 10 presents corresponding results for the model that includes the pretests. We
find that biases of the ATE estimators are very small for both specifications. Furthermore, the “true”
standard errors align with the empirical ones if the sample contains at least 12 study sites. The
pattern of results is similar if the number of schools per site is varied, including a matched pair

design with 1 treatment and 1 control group school per site (not shown).

The simulation findings suggest that the design-based ATE estimator performs well for clustered
RCTs. Biases of the estimated ATEs are negligible if the sample contains at least 8 schools.
Furthermore, with a sample of at least 12 schools, the empirical standard errors produced by the
design-based approach align with the true standard errors, and are comparable to those for the HLM
and RCSE estimators. Thus, the design-based approach—which is fully based on the random
assighment mechanism and simple asymptotic variance approximations—is likely to perform well

under a range of RCT settings.
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Table 5. Simulation results for Design 3: average of estimated ATEs across replications

Model with pretests Model without pretests

Total clusters Design- Design-
(treatment, based HLM RCSE based HLM RCSE
control) estimator estimator estimator estimator estimator estimator

Normal distributions for the error terms

8(5,3) 3.02 3.03 3.11 2.99 3.05 3.19
12 (8,4) 3.01 3.04 3.11 2.95 3.02 3.13
16 (10,6) 3.01 3.03 3.08 3.04 3.06 3.13
20 (12,8) 3.02 3.03 3.06 3.00 3.01 3.05
40 (24,16) 2.98 2.98 3.00 3.04 3.04 3.04
60 (36,24) 2.99 2.99 3.00 2.97 2.98 3.00
Bimodal normal distributions

8(5,3) 2.94 2.98 3.10 2.97 3.01 3.22
12 (8,4) 2.99 2.99 3.13 2.99 3.03 3.21
16 (10,6) 3.02 3.02 3.08 2.96 2.98 3.07
20 (12,8) 2.96 2.97 3.00 3.01 3.02 3.07
40 (24,16) 3.01 3.02 3.03 3.05 3.06 3.09
60 (36,24) 2.99 2.99 3.01 3.02 3.02 3.05
Chi-squared distributions (with zero means)

8(5,3) 2.99 3.01 3.10 3.06 3.10 3.22
12 (8,4) 2.97 2.99 3.10 2.99 3.04 3.19
16 (10,6) 2.99 3.01 3.05 2.98 3.01 3.09
20 (12,8) 2.99 3.00 3.05 3.06 3.08 3.12
40 (24,16) 3.01 3.01 3.02 2.98 2.99 3.03
60 (36,24) 2.99 3.00 3.01 2.98 2.99 3.02
Chi-squared distributions (with zero means) where the estimation model includes the natural log of pretest scores

8(5,3) 3.00 3.02 3.12 NA NA NA
12 (8,4) 2.98 3.02 3.12 NA NA NA
16 (10,6) 3.03 3.04 3.10 NA NA NA
20 (12,8) 3.00 3.00 3.03 NA NA NA
40 (24,16) 2.99 2.99 3.00 NA NA NA
60 (36,24) 2.99 2.99 3.00 NA NA NA

Notes: The figures are averages of estimated ATEs across 10,000 replications for each estimator and specification. See the text for details
on the calculations.

RCSE = robust cluster standard error

NA = not applicable
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Table 6. Simulation results for Design 3: standard error estimates across replications for the model

with pretests

Standard deviation of estimated ATEs

Total clusters Design-
(treatment, based
control) estimator

Normal distributions for the error terms

across replications
(“true” standard errors)

HLM

estimator

RCSE
estimator

Average of estimated standard errors

Design-
based
estimator

across replications?

HLM

estimator

RCSE
estimator

8(5,3) 3.50 3.10 3.16 2.93 (1.08) 2.97 (0.88) 2.29 (0.80)
12 (8,4) 2.78 2.57 2.61 2.51(0.74) 2.52 (0.59) 2.09 (0.63)
16 (10,6) 2.29 2.16 2.18 2.15(0.48) 2.13(0.43) 1.88 (0.46)
20 (12,8) 2.00 1.89 1.91 1.92 (0.36) 1.89 (0.34) 1.72 (0.36)
40 (24,16) 1.40 1.35 1.35 1.37 (0.18) 1.35(0.17) 1.27 (0.19)
60 (36,24) 1.14 1.10 1.09 1.12 (0.11) 1.10(0.11) 1.06 (0.13)
Bimodal normal distributions

8(5,3) 3.12 3.22 3.18 2.61(0.95) 3.14 (0.86) 2.31(0.74)
12 (8,4) 2.48 2.73 2.65 2.22(0.65) 2.65 (0.55) 2.09 (0.58)
16 (10,6) 2.02 2.26 2.18 1.89 (0.42) 2.24 (0.39) 1.88 (0.43)
20 (12,8) 1.78 2.00 1.91 1.68 (0,31) 1.99 (0.30) 1.72 (0.33)
40 (24,16) 1.22 141 1.34 1.20 (0.15) 1.41 (0.15) 1.26 (0.17)
60 (36,24) 0.99 1.14 1.07 0.98 (0.10) 1.16 (0.10) 1.05 (0.12)
Chi-squared distributions (with zero means)

8(5,3) 3.69 3.33 3.54 3.09 (1.18) 3.18 (0.99) 2.49 (0.94)
12 (8,4) 291 2.76 2.95 2.63(0.81) 2.70 (0.68) 2.29 (0.75)
16 (10,6) 2.39 2.31 2.47 2.25 (0.54) 2.29 (0.50) 2.09 (0.60)
20 (12,8) 2.12 2.07 2.20 2.01(0,40) 2.03(0.39) 1.93 (0.49)
40 (24,16) 1.46 1.45 1.55 1.44 (0.20) 1.46 (0.20) 1.46 (0.28)
60 (36,24) 1.19 1.19 1.27 1.18 (0.13) 1.20 (0.13) 1.22 (0.19)
Chi-squared distributions (with zero means) where the estimation model includes the natural log of pretest scores

8(5,3) 3.69 3.32 3.54 3.09 (1.16) 3.19 (0.99) 2.50 (0.93)
12 (8,4) 2.94 2.80 2.99 2.64 (0.81) 2.72 (0.68) 2.30(0.75)
16 (10,6) 2.40 2.30 2.47 2.25(0.53) 2.29 (0.50) 2.09 (0.59)
20 (12,8) 2.12 2.06 2.19 2.01(0.41) 2.04 (0.40) 1.94 (0.50)
40 (24,16) 1.46 1.45 1.54 1.43 (0.20) 1.45 (0.20) 1.46 (0.28)
60 (36,24) 1.18 1.18 1.26 1.17 (0.13) 1.19 (0.13) 1.21(0.19)

Notes: The figures are based on 10,000 replications for each estimator and specification. See the text for details on the calculations.

RCSE = robust cluster standard error

a Standard deviations are shown in parentheses.
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Table 7. Simulation results for Design 3: standard error estimates across replications for the model
without pretests

Standard deviation of estimated ATEs
across replications
(“true” standard errors)

Average of estimated standard errors
across replications?

Total clusters

Design-
(treatment, based HLM RCSE based HLM RCSE

Design-

control) estimator estimator estimator estimator estimator estimator

Normal distributions for the error terms

8(5,3) 4.43 4.36 4.41 4.18 (1.40) 4.22 (1.25) 3.28 (1.14)
12 (8,4) 3.77 3.70 3.73 3.56 (1.01) 3.57 (0.85) 2.98 (0.90)
16 (10,6) 3.13 3.07 3.08 3.06 (0.67) 3.03 (0.61) 2.69 (0.66)
20 (12,8) 2.76 2.70 2.71 2.73(0.51) 2.69 (0.49) 2.46 (0.54)
40 (24,16) 1.96 1.91 1.91 1.94 (0.25) 1.91(0.24) 1.81(0.28)
60 (36,24) 1.59 1.55 1.55 1.59 (0.16) 1.56 (0.16) 1.50 (0.19)
Bimodal normal distributions

8(5,3) 4.67 4.66 4.78 4.44 (1.36) 4.48 (1.21) 3.51(1.14)
12 (8,4) 3.89 3.88 3.97 3.78 (0.95) 3.82(0.77) 3.21(0.88)
16 (10,6) 3.28 3.26 3.30 3.23(0.61) 3.23 (0.55) 2.89 (0.65)
20 (12,8) 2.88 2.87 2.89 2.87 (0.45) 2.86 (0.42) 2.63(0.51)
40 (24,16) 2.03 2.02 2.01 2.05 (0.22) 2.04 (0.20) 1.94 (0.27)
60 (36,24) 1.70 1.69 1.66 1.67 (0.15) 1.67 (0.14) 1.60 (0.18)
Chi-squared distributions (with zero means)

8(5,3) 4.65 4.65 4.87 4.38 (1.50) 4.47 (1.36) 3.53(1.29)
12 (8,4) 3.88 3.89 4.10 3.68 (1.05) 3.78 (0.92) 3.20(1.01)
16 (10,6) 3.26 3.26 3.43 3.19(0.72) 3.23(0.68) 2.95 (0.80)
20 (12,8) 2.89 2.89 3.05 2.84 (0.54) 2.86 (0.53) 2.70 (0.63)
40 (24,16) 2.04 2.04 2.16 2.02 (0.26) 2.03 (0.26) 2.01(0.35)
60 (36,24) 1.68 1.67 1.74 1.66 (0.17) 1.67 (0.17) 1.67 (0.24)

Notes: The figures are based on 10,000 replications for each estimator and specification. See the text for details on the calculations.

RCSE = robust cluster standard error

a Standard deviations are shown in parentheses.
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Table 8. Simulation results for Design 3: Type 1 errors across replications

Percentage of t-statistics that are statistically significant

Model with pretests Model without pretests

Total clusters Design- Design-
(treatment, based HLM based HLM RCSE
control) estimator estimator RCSE estimator estimator estimator estimator

Normal distributions for the error terms

8(5,3) .077 .038 .106 .061 .045 116
12 (8,4) .070 .046 .099 .064 .052 .108
16 (10,6) .062 .046 .083 .056 .051 .082
20 (12,8) .057 .044 .074 .051 .048 .071
40 (24,16) .055 .047 .063 .050 .048 .063
60 (36,24) .054 .053 .060 .049 .048 .055
Bimodal normal distributions

8(5,3) .081 .043 .105 .065 .056 123
12 (8,4) .075 .050 .108 .064 .051 110
16 (10,6) .064 .049 .081 .056 .050 .083
20 (12,8) .061 .049 .070 .053 .048 .072
40 (24,16) .052 .048 .062 .048 .045 .059
60 (36,24) .050 .046 .053 .052 .050 .062
Chi-squared distributions (with zero means)

8(5,3) .080 .036 107 .060 .047 21
12 (8,4) .071 .042 .104 .057 .048 113
16 (10,6) .057 .046 .088 .053 .047 .086
20 (12,8) .056 .048 .082 .054 .051 .078
40 (24,16) .052 .048 .066 .053 .050 .067
60 (36,24) .053 .048 .060 .051 .047 .058
Chi-squared distributions (with zero means) where the estimation model includes the natural log of pretest scores

8(5,3) .074 .035 .106 NA NA NA
12 (8,4) .073 .046 .108 NA NA NA
16 (10,6) .063 .046 .092 NA NA NA
20 (12,8) .055 .045 .076 NA NA NA
40 (24,16) .053 .050 .063 NA NA NA
60 (36,24) .048 .046 .057 NA NA NA

Notes: The figures are the percentages of t-statistics that are statistically significant across 10,000 replications for each estimator and
specification. See the text for details on the calculations.

RCSE = robust cluster standard error

NA = not applicable
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9. Simulation analysis

Table 9. Simulation results for Design 4 for the design-based SP estimator without pretests

Average of Standard deviation Average of estimated

Total sites estimated ATEs of estimated ATES standard errorsa

Normal distributions for the error terms

4 3.03 3.02 2.78 (1.19)

8 2.99 2.14 2.06 (0.57)
12 2.98 1.72 1.71(0.38)
16 3.01 1.51 1.48 (0.28)
20 3.00 1.34 1.34 (0.23)
40 3.01 0.94 0.95 (0.11)
Bimodal normal distributions

4 3.02 3.33 3.05(1.29)

8 3.01 2.32 2.26 (0.61)
12 2.98 1.90 1.87 (0.40)
16 3.00 1.65 1.63 (0.30)
20 3.01 1.47 1.46 (0.24)
40 2.99 1.03 1.04 (0.12)
Chi-squared distributions (with zero means)

4 2.98 3.17 2.94 (1.30)

8 3.01 2.24 2.19 (0.64)
12 3.02 1.85 1.80 (0.42)
16 2.99 1.62 1.57 (0.31)
20 2.99 1.44 1.41 (0.25)
40 3.03 1.02 1.01(0.12)

Notes: The figures are based on 10,000 replications for each estimator and specification. See the text for details on the calculations.

a Standard deviations are shown in parentheses.
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Table 10. Simulation results for Design 4 for the design-based SP estimator with pretests

Average of Standard deviation Average of estimated

Total sites estimated ATEs of estimated ATES standard errorsa

Normal distributions for the error terms

4 3.02 2.98 1.62 (0.80)

8 2.98 1.64 1.38 (0.40)
12 2.99 1.29 1.17 (0.27)
16 2.99 1.11 1.03 (0.20)
20 2.99 0.98 0.94 (0.16)
40 2.99 0.68 0.67 (0.08)
Bimodal normal distributions

4 2.98 2.63 1.54 (0.72)

8 2.97 1.43 1.26 (0.37)
12 3.02 1.13 1.08 (0.25)
16 2.99 0.95 0.94 (0.18)
20 2.99 0.85 0.85 (0.15)
40 3.00 0.58 0.61 (0.07)
Chi-squared distributions (with zero means)

4 2.98 3.19 1.73 (0.90)

8 3.02 1.79 1.47 (0.46)
12 2.96 1.39 1.25(0.31)
16 3.00 1.19 1.10 (0.23)
20 3.00 1.05 1.00 (0.19)
40 3.00 0.73 0.72(0.10)

Notes: The figures are based on 10,000 replications for each estimator and specification. See the text for details on the calculations.

a Standard deviations are shown in parentheses.
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Appendix A: Mathematical proofs

Proof of Lemma 5.1

The argument in (5.3) in the main text proved that Ey (B, . pp) = Ex(Vr = V) = Brars.ip > 50 Brus.pp 19
unbiased. To calculate the moments of £, ,p, it is convenient to use the regression model in (5.4) to

express [, .. pp as follows:

S T=pW ST DU+ BT~ ) 1]

(Al) Bncus = L - ‘
) np(1— p)

S (T - pu

i=l

np(1-p)

= ﬂnclus,FP 4

where the last equality holds because Z(]: —p)=0 and Z(Tl — p)> =np(1- p). Substituting for u,

using (5.4) and (5.4a) yields:

ST -p)+o@-pP] S Tla,+(1-2p)]

A2) Brerr — =+ =
( ) (ﬂnclus,FP ﬂncluS,FP) np(l _ p) I’Zp(l - p)
S
i=1

B np(1-p)

;L =(1-p)XO-Y 1)+ p(Y,(0)-Y(0)

Using (A.2), the variance of Bnc/us,FP is:

Var, (T pO=pXEE T D)

V R Anclus FP) = 2 = 2
e Btsrr) =1 ] [np(1—p)]

b

where the last equality holds because Var,(T}) = p(1- p) and Cov,(7;,T,) =—p(1— p)/(n—1). Because
le‘ =0, it follows that (Z li)2 =0, and thus, _Zzlili' = Zlf . Hence,

i it i
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A Y YIa-p GO -F W)+ pt0) - FO)P
(A-3) VarR (ﬂnclus,FP) = = =

np(-p)n—1) np(1— p)(n—1)
(l_p)Sz+ V4 S2+ZS—£C
np | n(l-p) © n

Using S” = S; + 82 — 25, and solving for S yields the variance expression in (5.6), and the asymptotic

variance expression in (5.8) follows directly from (5.7).

The asymptotic normality of ,BAndus’ rp follows by expressing (A.1) as

Jn p(l- p)(ﬁ'nclus’ op ~ Brcs.rp) = Z; (T -pu,/ Jn and using a central limit theorem for finite
populations (see for example, Freedman 2006, Hégland 1978, and Hajek 1960).

Proof of Lemma 5.2

A

Using the notation from the proof of Lemma 5.1, the SP estimator S, o can be expressed as

ﬁndus’ o= z f; v, /np(l—-p)=y, =Y. Substituting for V; using (5.16) yields

i=l1

(ﬁnclus,SP - ﬂnclus,SP) = z iel /np(l - p) : ThUS, ERI (ﬁAnclLts,SP) = ﬂnclus,SP because Of (517)’ and the

i=1

variance expression in (5.19) is obtained using (5.18). Asymptotic normality follows by applying a
conventional central limit theorem to ZfQ / \/; (see, for example, Rao 1973).

i
Proof of Lemma 5.3

Let z, =( 7, %,) be centered model explanatory variables with the associated parameter vector

(By Boowsrr Y) - The multiple regression estimator can then be expressed as

A 1 0 0 Z v,/
ﬂo n n n I'll:1
AD | Brwmre | =IO ZZ)"' D 2y 1=|0 pl-p) D.Tx/n| | D Ty /n
i=1 i=1 i=1 i=1

¥ ; ) :
0 D.T%/n Y X% /n| | D Xy /n
i=1 i=1 1 L=l i
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n
Because of random assignment, Z 7%, /n—L—0,where —— denotes convergence in probability. Thus,
i=1

(Z Zz.)/n converges to a block diagonal matrix as 7 approaches infinity, and we find that

i=1

(A5a) fo—2Y Ey(y)/n=pT D)+~ p)T(0)=f,,

i=1

. 1 n 5
(A4.5b) ﬂnclus,MR,FP F— (= p) ZER (Ty)

ZE (LY, (D) +(A=T)Y(0)) = By s

np(l

(4.5¢) ¥= (Z~,~ /n)” Z( (ﬁ0+ﬂnclusFPT+u))/n—)Q Q.=7-

Thus, (A.5b) proves that 8, . \r zp 18 consistent.

To obtain the asymptotic distribution of £, \ zp» We apply a standard asymptotic expansion to (A.5b):

(4.6) \/_(:Bncm MR ,FP :Bnclus )= \/— (1 I5) Z =By - ﬂnclus L 17)"'0 OF

i=l1

where o0 (1) signifies a term that converges in probability to zero. Using the relation

=TY,(1)+(1-T)Y,(0) and the definitions for S, B, p>and ¥ in (Al2a) to (A.12c), we can express
the r1ght hand side of (A.6) as follows

Z (T =Y (D) +A-T)(T(0)~Y (0) - X,QQ,,) +0,(1)-

A7
47 Jnp(-p) 5

Using definitions for &; and 7; from (5.4a), this expression can be further simplified as

(A4.8) ZT[a +(1-2p)7, X2, |+0,(1)-

1
up(-p) &
The term inside the brackets in (A.8) sums to zero. Thus, if we define ll. as the bracketed term in (A.8), then
Zli =0, and we can use the same methods as for Lemma 5.1 to derive the asymptotic variance of

oy

ﬁnclus,MR,FP :
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n

Z[al. +(1-2p)r, -%,Q1Q T

A 1 <
Var = = +o0 (1/n
R(ﬂnclus,MR,FP) np(l _ p) n _1 n p( )
s 5§ o o'o Q00
_p>(_T+—C__T _TTxe”" "xx Xu_z(l_zp) a2t e
np n(l-p) n np(1- p) np(1- p)

Asymptotic normality follows from a standard central limit theorem.

Proof of Lemma 5.4

The main text provides an outline of the proof using the law of iterated expectations and the law of total
variance. Here, we provide an alternative proof that relies on first principles similar to Lemma 5.3, because
this approach is used for other designs presented later in this report.

Using (A.5b), we have that S ur.sp 1S @ consistent estimator for B ..sp because
Brrsmse ——>Ep (T,y,) p(A=p) = E,(Y,(1) = Y,(0)) = B,.,,,.sp - T obtain the asymptotic distribution
of Beus.ur.sp» Note first that the expectation of the term inside the summation sign in (A.6) equals zero.

Thus, a simple application of the central limit theorem shows that ,é has an asymptotically normal

nclus ,MR,SP

distribution with mean 3, , > and variance:

. 1 . .
(A9) AsyVarRl (ﬂnclus,MR,SP) = ﬁER] (7:2 (yz - /’IO - ﬂnclus,SPT; - Xiy)z) y
np~(1-p)

Using the relation y, =TY.(1)+(1-7,)Y.(0) and plugging into (A.9) the definitions for
Ho = Py (L= D)y B s = (i — Hey), and ¥ = AZ A, we obtain 5.27 after some algebra.

Proof of Lemma 5.4a

Let Z,=(1 7,X; q;) be the centered explanatory variables with associated parameter vector

(tty Bropesy ¥ d) - To show that the multiple regression estimator is consistent, we note first that as n

becomes large, Zi:il / n converges to a block diagonal matrix because the off-diagonal terms, E,, (f:x,k) ,
i=1

E.(T’%,), and E, (Tx.), are zero due to the centering of the variables. Thus, we have that
ﬂAndus, vrspm ————> Epg (Ty)! p(l=p) =ty — iy = B cius.sp» Which proves consistency. Similarly, we
have that fi, —2—> ppty, + (1= Py, = tys ¥—2>ALA,, =7, and o—2> ALA =8.Tocalculate

the asymptotic distribution of B, ;.. 1z sp.m » We Use the following asymptotic expansion:
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1 n

\/;(ﬂnclus,MR,SP,Im _ﬁ”C’“S’SP) - m
- i=1

Ty, = Ho = Brow.seT, — X7 — 40 + p(1— p)x,8) +0, (1),

where the “correction” term, p(l1— p)X;0, ensures that the summation approaches zero in large samples.

Thus, the asymptotic variance of [, .. 1z sp. s €20 be obtained by expanding the following expression:

A 1
AsyVary, (ﬂnclus,MR,SP,Int) =

— En[T7 (3, = Mo = Bus.srT, — %Y — 4,8 + p(1— p)%,87 .
n"p (1-p)

Using the relation y; = TY;(1)+(1-T;)Y,(0) and plugging in the definitions for £y, B,s.sp» ¥ and 0

from above, we obtain (5.27a). Asymptotic normality follows using a standard central limit theorem.

Proof of Lemma 5.5

For ease of presentation, we assume two subgroups (s =2 ). The proof is identical for more subgroups, but

the notation becomes more cumbersome. Let z, = (G, 7, G,T, G, G,, X,) be the model explanatory

i

variables with the associated parameter vector (£, £, S, 0, ¥). Note that B, =B, .1 ursp is the ATE

parameter for subgroup 1 (for example, girls) and f, is the ATE parameter for subgroup 2 (for example,

boys). The multiple regression estimator can then be expressed as

n

= (5, ) (X 2y, ) —L A Ey (22,)] Eny (Z.7,),

i=1 i=1

(A.10)

2> o ),_QD F) __h)

where Z, =(G,T. G,T. G, G, X,). The matrix E, (2/z,) is block diagonal. To see this, we can examine

each of the off-diagonal terms in turn:

1.E,, (G,G,T*)=0 because individuals can be in one subgroup level only.

2.Ey(G,G,T)=E(G,T))= p(l— p)E (G, | T, =)= p(1- p)E,, (G, | T, = 0)
= p(l_p)[% _%] =0

and similarly for E,, (szszi) .
3.Ey (GilGizji) =0

4. Ey (G, T3,) = p(1= p)aiEy (3, | Gy = LT, =1) = p(1= p)g, By (3,1 G, =11, =0) =0
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and similarly for Ej, (Gi27-;xiq)
Note also that Ey, (G,T,)* = p(1- p)q, and E, (G,T,)* = p(1- p)q,.

In what follows, we add the variables G;; and G,, into the X, vector because they could be correlated, and

label this vector as X; = (G, G,, X;) with associated parameter vector Y = (0, 6, 7). We find then that

(A.10) can be expressed as follows:

-1

B p(1-p)g, 0 0 ERI(Giliyi)
(411 | B, |——> 0 p(-p)q, 0 Ew(G,Ty,) |
’?* 0 0 Axx* ERI (X:*yz)

where A, =E,(X/'X,). Solving further, we have that

(4A12a) B, —P>[p(1—p)ql]‘1Em(Gilfyi>
=[p(1-p)q,1"'[p(1- p)g,Ex (¥, | G, =) - p(l-p)q,Ey (¥, 1G, =1,T, =0)]
=Hp —He = ﬁnc[us,l,SP

(A12b) ﬂz — [ p(l- p)‘]z] RI(GiZT;yi) =Hry = Her = ﬂnclus,z,sp

(A12d) 7 —25ALA . =7,

xx*
.k
where A . =E, (X ;).

Note that (A.12a) and (A.12b) prove that the multiple regression estimators ﬁAl and ﬂAz are consistent for

the subgroup ATE parameters. The same proof applies to the general situation with s subgroups.

To obtain the asymptotic distribution of ﬂg for subgroup ¢ for the general case with s subgroups, we apply

a standard asymptotic expansion to (A.10):

i=1

(A13) N1 (B, = B asr) = N (11 o Z I Zﬂ G T -xv)+0,(1).

The expectation of the term inside the first summation sign equals zero. Thus, a simple application of the

Iy

central limit theorem shows that has an asymptotically normal distribution with mean and
g ymp Yy nclus,g ,SP

variance:

138



Appendix A: Mathematical proofs

1

(4.14)  AsyVary, (B,) = T

E,(I7G, (v, - Y. B,G, T, -%7)).
g=1

Using the relation y, = TY,(1)+(1-T))Y;(0) and plugging into (A.14) the definitions for £, and Y in

(A.12a-c), we obtain 5.36 after some algebra.

Proof of Lemma 5.6

To consider the asymptotic moments of ﬁnch{s, spv » we use weighted OLS methods to estimate (5.16) using

the weights w,. Let T}, =7, — p,, be the centered treatment status variable, where p,, is the weighted

treatment group sampling rate. Letting z, = (1 7, ), the weighted least squares estimator is

/,’2 n n
(4.15) [ ]=[<2Riwizzzi>lzfeimz;yf1
i=1 i=1

nclus ,SP,W
4
» E,(Rw,) 0 E,(Rw,y,)
0 E, (R:W:Z;/) E,(RwT, y,) .

Thus, using Assumptions (5.2), we have that

(A4.16a) f[lO,W—p>EI(RiM}i)_1EI(RiVViyi)
= E, (W) [py E, (WY, (D) + (1= py ) E; (W,Y;(0))]

(A 16b) ﬂAncfllts,SP,W —p)El (Riwif;I%V)_l E[ (Rlvvlj:l'Wyl)
=[E, (W) py (1= p )T E, (W, (,() = Y;00)) py (1= Py) = B 5o

A

which proves that ﬂncm, spyy is consistent.

As in previous lemmas, we can obtain the asymptotic distribution of ﬂnclm’ sp by applying an asymptotic
expansion to (A.16b):
1 n

Zwif:W (yl _IUO _ﬂnclus,SPf;W) +o (1) .
Jnp, (1= p,)E,(w) 5 '

(A17) \/;(lénclm,SP,W - ﬂnclus,SP) =

The expectation of the term inside the first summation sign equals zero. Thus, using the central limit theorem,

A

we find that ,Bnclm’ spyv has an asymptotically normal distribution with mean f, . ¢, and variance:
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1
n[p, (1= p, ) E(w, )]2

Eo (T w [T () = piyy )+ (1= T)(X(0) ~ ey, )]

(A.18)  AsyVary, (ﬂnclus,SP) = Ey, (T~,5V Wi2 =y — ﬂnclus,SPj:t"W )2)

1
nlp, (1= py ) EW)T

We find that (5.47) follows after some algebra.

Proof of Lemma 6.2

The consistency of ﬁ was established in (6.23) of the main text. To obtain the asymptotic

nclus ,blocked ,PATE

variance of f3 , we sequentially use the law of total variance using the same conditioning approach

nclus ,blocked ,PATE

that was used to establish the consistency of the ATE estimator. First, conditioning on the student and block

h
samples and replacing (Z wb)2 by the asymptotic approximation AE, (Wb)2 , we have from the FP model
b=1

in (6.4) that as the number of blocks gets large

(A4.19) Var, (B )~;iwz[ S, Sk S
. R nclus ,blocked ,PATE hEB (Wb )2 < b nbpb nb (1 _ pb ) nb .

Second, using the law of total variance and averaging over the sampling of 7, students from each block, we

have that:

(A4.20) Vary, (ﬂnclus,bl()cked,PATE) = E,(Var, (ﬂnclus,blncked,PATE ) +Var,(E, (:Bmazus,blocked,PATE )

2 2 2
ol St s ey 1
b

oo
—— ) wVar, (Y, -Y,).
hE,(w,) S mp, m(l-p,) n, o hE,(w) g T

Because Var, (Y, — Y., )= 0>, /n,, (A.20) reduces to

. 1 L oy, a;
A21) Vary (B, ~ wy [+ —=—].
( ) RI (ﬁnglus,hlocked,PATE) hEB (Wb )2 ; b [nbpb nb (1 _ pb )]

Finally, if we again apply the law of total variance by averaging over the sampling of /& blocks, the expression

in (6.24) follows. Asymptotic normality follows from the central limit theorem.

The proof of (6.25) involves some tedious algebra, which we outline here. To simplify the notation, let

A

I, = ﬁnclus,b, oure be the ATE estimator in block b and let I, = Boctus piockea.pare D€ the pooled ATE

estimator. Our goal is to calculate

ER]B[i(Wblb _WTW)Z]’

(4.22) -
(h=DhE(w,) =)
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We focus on the numerator term, which after expanding the squared term can be expressed as follows:
(A4.23) Ey[hE,, (W}?I;) - hszRl (Tn% )]

Note that

(4.24) hW'E, (I;})=—E,, (Z wil + Z Z w,w,1,1,)
b=1 b'#b
=E, (wj]j) +(h=D)E,, (ww,L1,).
Thus, if we plug (A.24) into (A.23), we can express (A.23) as
(A4.25) (h=DE[E, (W, 1})—E, (ww,I,1,)].
We now examine each of the terms inside the brackets. The first term is

(4.26) EM(W§IZ)=ER,(wb Z”; ,b ,b(l)——Z”” (1-T,)%,(0)])

2 2

Oy 2
_Wb[ Ire +— +(:uTb Hep) 1,
A, Ng

which follows by expanding the squared term, using the law of iterated expectations, and using the relations

E(T.T,)= M E(T.Q-T ))_M,andsoonforiii'.
isTi's R is i's
n, (n[, _1) n, (nb -

Using similar methods, we can show that the second term in the brackets in (A.25) is
(A27)  Ep(Ww, I, 1) = wwy (ty, =ty My — Moy ) -

Gathering terms in (A.26) and (A.27), we can then express (A.25) as follows:

2 2
G Oy
(4.28) (h- I)EB[ [+ =2+, — :qu)z] =Wy Wy (g, = Hey Yty = Hey)]-
Np, Ney
Because samples across blocks are independent, we have that

Ey(Wywy (g, — Hen My — Hew)) = Eg (W, (17, — He ))2 .

Thus, (A.28) becomes
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02 02
(429)  (h=DE,[w; [ +—L]+Vary[w, (1, — tic)]].
A Ng

Inserting (A.29) into (A.22) shows that
(4.30) _  E [i(wl —wl, )2]—;15 [w2[—2+o-—é”]+Var [w, (£, — t1)]]
. (h—l)hEB(wb)z RIB o L w hEB(Wb)Z slLWy . g, LW \Hpp — Hep )]s

which establishes (6.24).

Proof of Lemma 7.1

[t is convenient to use the centered dependent variable, ¥, = ¥, — -, in (7.9) and to exclude the intercept.

The weighted least squares estimator for 3, .. zp is

(A3 1) ﬁclus,FP = zwjff);;j /Z ij}z !
= =
Using the relation in (7.9) that y, = TJZ(I) +(1- TJ)YJ(O) , we find that as 7 — 00

E[Ey(wT, I Ep[Ew,T(TY,(1)+(1-T)Y,(0))]
Fp(wj)p(l p) Epp(w;)p(1—-p)

_ Eplw, Y, ()-Y,(0)]p(l-p)
Epp(w,)p(1—p)

(A'32) ﬂAclus,FP £

clus ,FPa >

which proves that the weighted least squares estimator is consistent for the asymptotic FP parameter.

To obtain the asymptotic distribution of ﬂ us.rp » We apply a standard asymptotic expansion to (A.31):

1 Eppl> 0TGP T W40, (1),

(4.33) \/Z(,@dus,w—ﬁdusﬂ’a):\/EE (w)p(-p)
P W)PE— -

Using the relation in (7.9) and the definition for ,Bndus’ rp in (A31), we can express the right hand side of
(A.33) as follows

1
T E(w)p(1- p)

(4.34 Fp[z w T AT, (¥,() =X, (1) + (1=T))(¥,(0) - ¥, (0)}]+0, (D).

Using definitions for &; and 7, from (7.9), this expression can be simplified as
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! EFP[inT}(OCj+(1—2p)1‘j)]+0p(1).

A35
( )JZEFP<wj)p<1—p)

Let [, =(a,+(1-2p)7;) and note that Z I, =0. Thus, the asymptotic variance of ﬂ s P 153

Epp[Var, (3w T p(l—p)EFPKﬁwfzf 1)
AS)/ VGVR (léclus FP) = 7 P = /=1 j =12 ,
) IME () p(= p)] [mEFPw,.)p(l—p)]

where the last equality holds because Var, (T;) = p(1— p) and Cov (T,T;) =—p(1— p)/(m—1). Because
ijlj =0, it follows that (Z lej) =0, and thus, Z Z w/l/ll = zw212 Hence,
J J

VAAD

Epol> W]
E,p(w ) p(i— pym(m—1)

S Byl (1 p)E, ()~ T, (0)+ p(T, (0)~ T, (O}

(4.36)  AsyVary (B, ) =

Epp (Wj )2 p(—p)m(m-1)

_ 1 |:§7%W+ ECZ'W _§T2VV .
Ep(w) | mp m(-p) m

The asymptotic normality of ﬂ s pp fOllows from (A.35) using a central limit theorem for finite populations

(see for example, Freedman 2006, Hogland 1978, and Hdjek 1960).

Proof of Lemma 7.2

[t is convenient to use the centered dependent variable ', = ¥, =}, in the regression model and to exclude

the intercept. The weighted multiple regression estimator for the parameter vector is

ﬂc/u.x,MR,FP,W _ = =1 = = | /7 J=1
N _[(Z W, z,) szw/.y/]— N ‘
j=1 j=1 ~— = = = =
' ' > wTX /m Y XwX /m E Xwy. /m
JJd [N b
J=1 Jj=1 Jj=1

n Zm:w/_f’jz/m iw,fij/m ZwTy /' m
(A37)[ J

Y
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Because of random assignment, z w; i /m—p—)ER(ijjij) =0. Thus, Zij’wj%] /m converges to a
J=1 J=1

block diagonal matrix as m approaches infinity, and we find that

: El B 0TI g e o fy)
(4.38a)  fysmrry —> ]:;1 S = Bius.rpa and
E L [E. > w fZ] FP(W )p(1-p)

(4.38b) ¥ = (zxwxj/m) Z(X(ﬂo"‘ clusFPT +n; ))/m—>waxVXWa:'Y~

Thus, (A.38a) proves that 3 sk ppy 1S consistent. To obtain the asymptotic distribution of ﬂclus MRFPIV

we apply a standard asymptotic expansion to (A.37):

1 L . .
E, > wT(, -8, T —Xy)l+o ().
mE,, w)p-p)

(4.39) \/;(ﬂclux,MR,FP,W - ﬂclus,FPa) =

Using the proof of Lemma 7.1, we can express (A.39) as

(A4.40)

1 m )
it i 1-2 —X. .
Ty 2@+ (1=2p)e, =X 0, 1)

Defining /, = (&, +(1-2p)z, —iﬂ{), the remainder of the proof follows using the same methods as for

Lemma 7.1.

Proof of Lemma 7.3

The consistency of /3 s e Was established in (7.28) of the main text and asymptotic normality follows using

a standard central limit theorem. To obtain the asymptotic variance of /. 1us.parr » We sequentially use the law

of total variance using the same conditioning approach that was used to establish consistency. First, averaging
over the super-population of students within the study schools conditional on the school samples and

treatment assignments yields

wiT, O'T, 1 wi(1-T))o,

(A41) Var, (B pyre) =———— 3
Q. wT) = " (ZWJ(I_TJ))Z a &

J=1 J=1

Second, using the law of total variance and averaging over the randomization distribution, we have

asymptotically that
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(A4.42) Vary, (ﬂAczm,PATE) = E,(Var, (:éczux,PATE ) +Vary (E, (ﬂAclu.s,PATE )

~
~

2 2 2 2 ) 2 2

p W0y (I-p) - Wi0g Ty Uy L'y
I/ 7G| n e
n

< ’” =2 —2 —2
— , — , 1-

E Qw7 B wanryy A | L e pw
= j=I1

m

where T2, = z sz. (et = Hpy ) — (e — Heyy ))? /(m —1) . The second bracketed term is the between-

school variance component and follows using results for the clustered FP model.

J=1

In (A.42), we have that E, (D wT) =m’p’Eg(w;)* and E, (D w,(1-T)) =m*(1- p)’ E¢(w,)*.
=1 =1

1/2

Thus, the within-school variance components are 0, (1/m"7), whereas the between-school variance terms

are 0, (1 / m). Thus, our first-order asymptotic approximation excludes the within-school variance terms.

Finally, (7.29) follows if we average over samples from the school super-population and use the relation

(A'43) I/a}/'IRS (ﬁclus,PATE) = ES (VarIR (IBClus,PATE )) + VarS (E[R (ﬁc[us,PATE )) )

where Varg (Ep, (IBAclus,PATE ) =3, /mEg (Wj)2 .
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